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The probability that the number of points on the Jacobian
of a genus 2 curve is prime

Wouter Castryck, Amanda Folsom, Hendrik Hubrechts and Andrew V. Sutherland

ABSTRACT

In 2000, Galbraith and McKee heuristically derived a formula that estimates the probability that
a randomly chosen elliptic curve over a fixed finite prime field has a prime number of rational
points. We show how their heuristics can be generalized to Jacobians of curves of higher genus.
We then elaborate this in genus g = 2 and study various related issues, such as the probability
of cyclicity and the probability of primality of the number of points on the curve itself. Finally,
we discuss the asymptotic behavior for g — oco.

1. Introduction and overview

1.1. The Galbraith-McKee conjecture: elliptic curves

Galbraith and McKee [17] studied the probability that a randomly chosen elliptic curve over
a finite prime field has a prime number of rational points. They conjectured the following. For
a prime number p > 3, let P;(p) be the probability that a uniformly randomly chosen integer
in the Hasse interval [p+1—2,/p,p+ 14 2,/p| is prime. Let P3(p) be the probability that
the elliptic curve defined by 3? = 2® + Az + B, for a uniformly randomly chosen pair (4, B)
in the set

Hap = {(A, B) € F2|4A% + 27B” # 0},

has a prime number of rational points (including the point at infinity).

CONJECTURE 1 (Galbraith-McKee [17, Conjecture A]). Define

w3 M0 -=m) T (i)

0>2 lp—1,6>2

where the products are over all primes /¢ satisfying the stated conditions. Then

lim (Po(p)/Po(p) — c3) = 0.

The constant ¢, lies between 0.44010 and 0.61514. In general, the conjecture predicts that
elliptic curves are about half as likely to have prime orders as one might expect.

The study of the probability of primality is partly motivated by elliptic curve cryptography.
For an elliptic curve over a finite field to be suitable as the underlying group for Diffie-Hellman
key exchange, its number of rational points is preferably prime (although small cofactors are
often tolerated). In practice, a ‘good’ elliptic curve is often found by repeatedly counting the
number of rational points on randomly chosen elliptic curves, for example using the SEA
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algorithm [31], until a prime number is hit. The above conjecture predicts that this process
works slightly worse than one would naively assume.

Galbraith and McKee provided both experimental support and heuristic evidence in favor
of Conjecture 1. Their main argument uses the Hurwitz—Kronecker class number formula,
which counts bivariate quadratic forms up to equivalence. A second argument estimates the
probability of primality by naively multiplying the expected probabilities of being coprime to
2,3,5,7,11,... For elliptic curve orders, these expected probabilities were devised by Lenstra
[25, Proposition 1.14]. When taking the quotient of the resulting estimates for P»(p) and P;(p),
one exactly finds ¢,. A reasoning of this kind had already been made by Koblitz [23, p. 160] in
the dual setting where one fixes an elliptic curve over Q and reduces it modulo varying primes,
a similar discussion on the case where one fixes a CM-curve of genus 2 over Q can be read
in Weng’s thesis [35, Section 5.2]. Galbraith and McKee called their second heuristics ‘not
very honest’, however, due to subtleties reflected in Mertens’ theorem. We will discuss these in
Section 3.

1.2. Genus 2 curves

Nonetheless, and this may be thought of as an underlying meta-conjecture, these second
heuristics work very well in practice, as is confirmed experimentally in Section 11. Moreover,
they seem more flexible towards generalizing Conjecture 1 to Jacobians of curves of higher
genus, which have also been proposed for use in cryptography. The required analogues
of Lenstra’s theorem are provided by a recursive formula due to Achter and Holden [3,
Lemma 3.2], which we turn into a closed expression in Section 5.

In this article, we elaborate this for curves of genus 2, which is the most relevant case for
cryptography. We derive the following conjecture. For a prime number p > 2, let P;(p) be the
probability that a uniformly randomly chosen integer in the Hasse—Weil interval

(Ve - D% (VP + 1)

is prime. Let P»(p) be the probability that the Jacobian of the genus 2 curve defined by

y? = f(x), for a randomly chosen polynomial f(z) in the set

He = {f(x) € Fplz]|f(x) square-free of degree 6},

has a prime number of rational points.

CONJECTURE 2 (see Section 6). Define

38 2 —0—-1 =3 —0—2
Cp‘zls>'1_[<1‘ (52—1)(6—1)2>' 11 <1+ (33—2e2—£+3)(z2+1)(z+1)>’

0>2 Lp—1,6>2

where the products are over all primes ¢ satisfying the stated conditions. Then

Ji (P (p)/Pi(p) = ¢p) = 0-

We implicitly assume that P;(p) # 0 for all p, which is an open problem in its own (see
[8, Section 2.2] for a related discussion). The constant ¢, lies between 0.63987 and 0.79890.
Summarizing, in genus 2, prime order Jacobians are also slightly disfavored, but to a lesser
extent than in genus 1.

1.3. Averaging over p

By averaging c, over all primes p, it becomes meaningful to measure the prime-disfavoring
behavior by a single constant. For elliptic curves, this gives the following lemma.
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LEMMA 1 (see Section 3). For each prime p > 3, let ¢, be as in Conjecture 1. Then

1 02 —0—1
o= tim oy 3 =T (1- =) ~0s

3<p<n 14

Here, 7 is the prime-counting function, and the product is over all primes .

This confirms a constant obtained by Koblitz [23, p. 160] and subsequently verified by Balog,
Cojocaru and David [5, Theorem 1]. In genus 2, the average reads as follows.

LEMMA 2 (see Section 6). For each prime p > 2, let ¢, be as in Conjecture 2. Then

1 00 —205+30+1
Cp = lim —— = I | 1- ~ 0.69464,
=, 2 =L O s )

where again the product is over all primes /.

1.4. Imposing a rational Weierstrass point

Instead of using Hg, we can choose f(x) uniformly at random from the set
5 ={f(z) € Fp[z]| f(x) monic and square-free of degree 5}.

This situation matches better with common cryptographic practice. However, it alters the
notion of taking a random genus 2 curve, since here one imposes the existence of a rational
Weierstrass point. As before, for each prime p > 2, let P; (p) be the probability that a uniformly
randomly chosen integer in the Hasse-Weil interval [(,/p — 1), (,/p + 1)*] is prime, but now
let P»(p) be the probability that a random genus 2 curve, in the above sense, has a Jacobian
with a prime number of rational points.

CONJECTURE 3 (see Section 7). Let ¢, be as in Conjecture 2. Then

i (P0)/PL0) - S5 ) =0
P00 19

The constant %cp lies between 0.30309 and 0.37843, so prime orders become dramatically
less probable. This is entirely due to the fact that the probability of having rational 2-torsion
increases from % to %. In Section 7, we will illustrate why for odd /¢, the expected probability
of having rational /-torsion is most likely unaffected.

Averaging %cp over all primes p as in Section 1.3 gives approximately 0.32904 (that is,
times the constant of Lemma 2).

9
19

1.5.  The number of points on the curve itself

We can also estimate the probability that the number of rational points on the curve itself,
rather than its Jacobian, is prime. For each prime p > 2 and with f(z) chosen uniformly at
random from Hg, let P>(p) be the probability that the non-singular complete model of y? = f(x)
has a prime number of rational points. Let Pj(p) be the probability that an integer, chosen
uniformly at random from the Hasse—Weil interval

p+1—4yp,p+1+4/p],
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is prime. For ¢ # p prime, define

app = #{(x,y) € F} x FN\{-p}) | (+y/x)1+p/y) =p+1},

(¢3—1) ifp=—1mod/
iy 5 3 _ ’
Brp:=U=1)( = +2) —a, { otherwise.

CONJECTURE 4 (see Section 8). Define

38 0 Bey
AT bHZ G- -Dl-1)
L#p

where the product is over all primes satisfying the stated conditions. Then

T (Pa(p)/Pa(p) = ¢3) = 0.

The constant ¢, lies between 0.79605 and 0.86548, with an estimated average (in the sense
of Section 1.3) of ¢, ~ 0.83376 . When switching to HE" instead of Hg, the leading factor 3 R
should be replaced by 16 The resulting constant ¢, hes between 1.00553 and 1.09323, with an

estimated average of ¢, ~ 1.05317, so prime orders actually become slightly favoured.

1.6. The probability of cyclicity

Using similar heuristics, one can estimate for each prime p > 2 the probability P(p,2) that
the group of rational points on the Jacobian of the curve defined by y? = f(z), with f(x)
chosen uniformly at random from Hg, is cyclic. This is done by considering for each prime ¢
the corresponding probability for the /-torsion subgroup, and then taking the product.

For elliptic curves, one recovers a formula that was proven by Vladut. Let P(p,1) be the
probability that the group of rational points on a randomly chosen elliptic curve over F,, (as
in Section 1.1) is cyclic. Then we have the following theorem.

THEOREM 1 (Vladut [34, Theorem 6.1]). For each prime p, define
1
= 1 e ———
o= 1 ( w?n)’
lp—1
where the product is over all primes satisfying the stated condition. Then

lim (P(p,1) —¢,) = 0.
p—o0

The constant ¢, is contained in [0.78816, 0.83334], with an average (in the sense of Section 1.3)
of ¢, ~ 0.81375. In genus 2, the same reasoning gives the following conjecture.

CONJECTURE 5 (see Section 9). For each prime p, define

. 151 m (- 1 I =000 -+ P4 0+1
P 180 02 —1)(0—1) 204 —1)(2 - 1) ’

£>2,0tp—1 £>2.0p—1

where the products are over all primes /¢ satisfying the stated conditions. Then

lim (P(p,2) —¢p) = 0.

p—0o0
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The constant ¢, is contained in the interval [0.79356,0.81918], with an average value ¢, ~

0.80883. If we replace Hg by HE', then the leading factor should be replaced by %, in which case

the constant ¢, is contained between 0.58335 and 0.60218, with an average value ¢, ~ 0.59457.
1.7. Extension fields

Fix a prime number p. Consider the alternative setup of finite fields F,» of growing extension
degree k over IF,. For g € {1,2}, let Pi(k,g) be the probability that a uniformly randomly
chosen integer in the Hasse interval [(v/p* — 1), (\/pF 4+ 1)%9] is prime. Let Py(k,g) be the
probability that the Jacobian of the (hyper)elliptic curve defined by y? + h(z)y = f(x), where
the pair (h, f) is chosen from

Hyt1,29+2 = {(f,h) € Fpr[x] x Fpulz]|degh < g+ 1,deg f =29 + 2,
y* + h(z)y = f(x) has geometric genus g}
uniformly at random, has a prime number of IF,«-rational points.

Then we have the following.

CONJECTURE 6 (see Section 10). Let
1 1
C’C:“P'H(l__z)' H <1+_)’
2 (€-1) Cpk—1.0>2 (L+1)(-2)

where the products are over all primes ¢ satisfying the stated conditions, and p, =0 if p =2
versus /i, = 2 if p > 2. Then

lim (Py(k,1)/Pi(k,1) —c) = 0.
k—o0
If p > 2, the formula for ¢; closely matches the formula from ¢, from Conjecture 1, with

p* — 1 in place of p — 1, and takes values between 0.44010 and 0.61514. For p = 2 we have
¢ = 0. In genus 2, the estimate reads as follows.

CONJECTURE 7 (see Section 10). Let

?—r-1 -3 - -2
C’“:“P'H<1_(421)(61)2) .a 11 (H(es242“3)@2“)(@“))’

0>2 pk—1,0>2

where the products are over all primes ¢ satisfying the stated conditions, and ), = % if p=2

versus i, = 35 if p > 2. Then

lim (Py(k,2)/Pi(k,2) = ) = 0.

Again for p > 2, the formula for ¢; matches the formula for ¢, in Conjecture 2 and takes
values between 0.63987 and 0.79890. If p = 2, then ¢ lies between 0.50516 and 0.63071.

It is possible to average the above over k, where the result will depend on the multiplicative
orders of p modulo the various ¢. Also, one can adapt Conjectures 6 and 7, and in fact any of
the conjectures stated above, to the mixed case of just considering finite fields F, of growing
cardinality.

1.8. Asymptotics for growing genus

Instead of elaborating similar, increasingly complicated formulas for higher genera g, we
conclude with an analysis of the asymptotic behavior for g — co. This may be of interest
to people studying analogues of the Cohen—Lenstra heuristics [11, 24] in the case of function
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fields, though we will not push this connection. Note that due to computational limitations,
the conjectures below are no longer supported by experimental evidence and rely purely on the
conjectured validity of our heuristic derivation.

For every prime number p > 2 and every integer g > 1, let P;(p,g) be the probability that
a uniformly randomly chosen integer in the Hasse—Weil interval

(Ve —1)*, (Vp+1)*]

is prime. Let P»(p,g) be the probability that the Jacobian of the genus g curve defined by
y? = f(x), for a randomly chosen polynomial f(z) in the set

Hag+o = {f(x) € Fplz]| f(x) square-free of degree 2g + 2},

has a prime number of rational points.
Then we have the following theorem.

THEOREM 2 (see Section 6). lim, 4o P2(p,g) = 0.

Theorem 2 holds because the probability of having rational 2-torsion tends to 1 as g — oo.
However, this is a hyperelliptic phenomenon. The limiting behavior becomes more interesting
if instead one defines Ps(p, g) as the probability that the Jacobian of a random genus g curve
over IF,, (for example, chosen from the set

My = {curves of genus g over F,}/ =g

uniformly at random, note that M, is typically not well-understood) has a prime number of
rational points. In this case, we expect the following conjecture.

CONJECTURE 8 (see Section 6). Define

1 10 0%
Cp = o0 7 " 25 1
Hj:z ¢() tip—1j=1 t 1
where ( is Riemann’s zeta function and the product is over all primes ¢ satisfying the stated
condition. Then

Jdm (Py(p,9)/ PP, g) — cp) = 0.

(oo}

Again, we implicitly assume that P;(p, g) is nowhere zero. The constant ¢, lies in the interval

[12,(2%/(2% - 1)) 1
[[2.¢0)  TTZic2i+1)

In other words, the prime-disfavoring effect persists as the genus grows. It even becomes slightly
more manifest than in genus 2. A more detailed analysis shows that the effect alternately
strengthens and weakens as the genus becomes odd and even, respectively. As in Section 1.3,
one can average c, over all primes p > 2, yielding a constant ¢, ~ 0.68857.

Similarly, for every prime number p > 2 and every integer g > 1, let P(p, g) be the probability
that the rational points of the Jacobian of the (hyper)elliptic curve y? = f(z), with f(z) picked
from Hog42 uniformly at random, constitute a cyclic group.

Then we have the following theorem.

C [0.63287,0.79353].

THEOREM 3 (see Section 9). lim, 4.0 P(p,g) = 0.
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Again, this is a hyperelliptic phenomenon due to 2-torsion issues. If instead we define P(p, g)
to be the probability that a curve chosen from M, uniformly at random has a cyclic Jacobian,
then we expect the following conjecture.

CONJECTURE 9 (see Section 9). Define

o=ty T 11 (1 ).

Lp—17= 1 tp—1

where ¢ is Riemann’s zeta function and the product is over all primes ¢ satisfying the stated
conditions. Then

lim (P(p,g) —cp) =0.

p,g—00

Now the constant ¢, lies in the interval

1 152, (2%/(2% = 1) - Tlpsp(1 + 1/ - 1))
[2:¢27+ 1) 1722 ¢0)

with an average (in the sense of Section 1.3) of ¢, ~ 0.80924.

] C [0.79352, 0.82004],

2. Common notions of randomness

By a randomly chosen (hyper)elliptic curve of genus g > 1 over a finite field ]F of odd
characteristic, we will usually mean the non-singular complete model of a curve y? = f(z),
where f is chosen from

Hogro = {f(x) € Fy[z]|f(x) is square-free and deg f = 2g + 2}

uniformly at random.
Alternatively, one could take the curve uniformly at random from

ngp = {(hyper)elliptic genus g curves over F,}/ =p,

This randomness notion may be preferred from a theoretical point of view. It is fundamentally
different from our first, in the sense that the map

Hagya — MPP: f— [y* = f(2)]

is not uniform. For small ¢, it does not even need to be surjective. Therefore, the probability
of having a certain geometric property may change when moving from one notion to the other.
However, as ¢ gets bigger and bigger, the change becomes negligible. More precisely, for ¢ — oo
(g fixed), the proportion of elements of M};yp having ¢(¢*> — 1)(¢ — 1)/2 pre-images in Hag4o
tends to 1. This can be elaborated following [27, Section 1]. Note that, despite the availability
of a complete classification of (hyper)elliptic curves up to Fy-isomorphism [27, Section 2], the
set ngp is quite cumbersome to work with.

Another setup, which is, for example, used in [2, Theorem 3.1], is to take f uniformly at
random from

Hoy o = {f(x) € Fy[z]| f(x) is monic, square-free and deg f = 2g + 2},

instead of Hog4o. Again, this is different from either of the above notions. For small ¢, there
may exist curves having a model in Hag1o that do not have a model in Hj; ,. But again, as
q — oo (g fixed), the difference dissolves. Indeed, consider the set

Sagr2 = {(f,a, B) € Hagra x Fy x F¥| f(a) = 5°}.
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Then we have a map
Sag+2 — Hg]g+2 (f,a,B8) — 5_2$29+2f(1/95 +a),

which respects the isomorphism class of the corresponding curve, and which is onto and ¢(q —
1)-to-1. Therefore, taking f uniformly at random from M3, and using the f of a uniformly
randomly chosen (f,«, §) € Sag42 give rise to equivalent randomness notions. On the other
hand, the map

Sogy2 — Hagyo : (fa,B) — f

is asymptotically uniform, since every f € Hagqo will have ¢ + O(,/q) pre-images by the Hasse—
Weil bound. This proves the claim.

In Section 10, we will allow char F, = 2 and use curves of the form y* + h(z)y = f(z) with
(f,h) chosen from

Hgv12g+2 = {(f, h) € Folz] x Fy[z]|degh < g+ 1,deg f = 29 + 2,
y* + h(z)y = f(x) has geometric genus g}

uniformly at random. Again, it is easy to show that if 21t ¢, the completing-the-square map
Hg41,29+2 — Hag+2 is essentially uniform.

In this article, we will always consider statistical behavior for ¢ — oco. In particular, the
validity of all statements below involving randomly chosen curves in the sense of Hagqo
is preserved when switching to either of the above alternatives, and vice versa. Some
statements involve error terms, so in fact a more careful analysis is needed; we omit the
details.

The picture does alter, however, when one takes f uniformly at random from

Hagr1 = {f € Fylz]| f(x) is square-free and deg f = 2g + 1}.

While this setting is often preferred in practice, this influences the story as soon as g > 2, since
it induces the existence of a rational Weierstrass point. We will study this effect in detail for
g = 2 in Section 7. On the other hand, writing

Hyy i1 = {f € Fylz]| f(x) is monic, square-free and deg f = 2g + 1},
the geometry-preserving map
Hogy1 — Hopiy : f— o f(x/a) (where a = lc(f))

is onto and (g — 1)-to-1. Therefore, Hag 41 and H3} 4 can be interchanged in any probability
statement below. If ¢ = 1 and moreover 3 { ¢, then this also accounts for

Hap = {(A, B) € F;|4A% + 27B* # 0},

since the completing-the-cube map H3 — H ap is uniform.

Note that the sets H2g+2,Hg;_ﬂ,Hg+1,2g+2,Hzg+1,7‘(‘2‘;+1,./\/lgyp and Hap depend on g,
while this is not included in the notation for the sake of readability. However, it will always
be clear from the context which ¢ is used (it will typically be the prime number p under
consideration).

3. Heuristic framework

For prime numbers p > 3 and ¢ # p, let P(p,¢) be the probability that the elliptic curve Esp
defined by y? = 2® + Ax + B, for a randomly chosen pair (A, B) in the set H g, has ¢ dividing
its number of rational points (including the point at infinity).
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THEOREM 4 (Lenstra). There exist Cy,Cy € Ry, such that

l

1

1 .
Pl = | < Cat/ VB itttp-1

for all pairs of distinct primes p,{ with p > 3.

Proof. See [25, Proposition 1.14], to which we refer for explicit estimates of the C;. O

We can now describe and discuss in more detail Galbraith and McKee’s second heuristic
argument supporting Conjecture 1. This is the type of reasoning behind all of our conjectures.
Let £(p) be the largest prime for which £(p) < \/p + 1. Let n be an integer chosen uniformly at
random from the Hasse interval, and let n be #E 45 (F,). The aim was to estimate the ratio
Py(p)/P1(p), where Py(p) and Ps(p) are as in Section 1.1. It can be rewritten as

P(2tnand 3tnand 5tn and ... and 4(p) 1 n)
P(2fnand 3tnand 5fn and ... and £(p) fn)’

A first heuristic step is to approximate the above by

P {n)PB )P ... PUEp) i)
PETn)P(B1n)PGIn)... P(Up) I n)

A second heuristic step is then to estimate P(£1n) by

I 2
l—g_llféfp—l, and l—mlfﬂp—l
(following Theorem 4), and P(¢{n) by
1
1—-.
14

One finds that

v Hgp a0 -1/ 1) - Tl (1~ /(2 — 1))
. I —1/0) /
where the products are over all primes ¢ < ¢(p) satisfying the stated conditions. Rearranging

the expression shows that

lim (¢, — ¢,) =0,

p—0o0

where ¢, is the factor appearing in Conjecture 1.

It is tempting to validate the heuristics using an independence argument based on the Chinese
Remainder Theorem (for n) and Howe’s generalization of Lenstra’s theorem (for 7, see [19]).
However, this is too naive. By Mertens’ theorem and the Prime Number Theorem, we have

1 277
[T (17) = Gy =27 R0
oy ogp

Here, v =~ 0.57722 is the Euler-Mascheroni constant (2¢~7 ~ 1.12292). For the heuristics to be
justified, we should therefore have

11 <1 - g_11> - II (1 — E2€1> ~ 2¢77 Py(p).

Up—1,L</p+1 Lp—1,£</p+1
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With this in mind, the heuristics becomes very subtle: why would both naive estimates be
“equally wrong”, in the words of Galbraith and McKee? We cannot give a satisfying answer, but
note the following. (i) The constant 2e~7, which reflects the ignored dependency between being
divisible by distinct primes, is accumulated in the tail of the product, with respect to which
n and n behave much alike. Stated alternatively, the ‘local ratios’ P(¢1{n)/P({{n) converge
quickly to 1. By considering ¢, as the limiting product of these local ratios, rather than the
ratio of two diverging products, one gets a more comfortable underpinning of the conjectured
heuristics. (ii) The heuristics are supported by Galbraith and McKee's first argument in favor
of Conjecture 1, which uses different methods (namely, the analytic Hurwitz—Kronecker class
number formula). (iii) As far as computationally feasible, the conjectures that we obtain
assuming this principle are confirmed by experiment in Section 11. (iv) The constant from
Lemma 1 provably appeared in the dual setting of a fixed elliptic curve over Q reduced modulo
varying primes p (see [5, Theorem 1]).
We complete this section with a proof of Lemma 1.

Proof of Lemma 1. First, let us give a heuristic derivation. Let £ be a prime number. By
Dirichlet’s theorem, the proportion of primes p satisfying ¢ | p — 1 is 1/(£ — 1). Averaging out
Lenstra’s result then gives

1 ¢ -2 1 2 -2
Plim~ g gt~ @-ne-1n
So
P(ltn) -1
Pt~ T @ nE-

and applying the above heuristics yields the requested formula.

To make the argument precise, pick any € > 0. It is easy to see that there is a uniform bound
L such that |c£ —¢p| < /3 for all p, where cﬁ is defined as in Conjecture 1, but with the
product restricted to primes £ that do not exceed L, and such that, similarly,

2 —7-1 2 —0—1
KHL(“<e2—1><e—1>2>‘1;[<1‘w—w—w) el

However, by the Dirichlet equidistribution of primes, and because we are taking finite products
now, there is an N such that n > N implies

1
() —2 >, a1l

3<p<n <L

2 —0—1
(1‘ <e2—1><e—1>2> <e/3

Combining the three bounds concludes the proof. ]

4. The random matrix model

4.1. The genus 1 case

Lenstra’s Theorem 4 can be understood from the following random matrix point of view. Let
F, be a finite field. Let N be a positive integer coprime to ¢, and consider the set

GLY(Z/(N)) = {M € GLy(Z/(N))|det M = g}.

This set is acted upon by GL2(Z/(N)), by conjugation. To any elliptic curve E/F,, we
can unambiguously associate an orbit of this action by collecting the matrices of gth power
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Frobenius, considered as an endomorphism of the Z/(N)-module E[N] of N-torsion points,
with respect to all possible bases. Denote this orbit by Fg.

Take char F, > 3. For any union of orbits C C Gqu) (Z/(N)), let P(Fg C C) denote the
probability that the orbit associated to the elliptic curve y* = 2® + Az + B, where (4, B) € F,
is chosen from H 4 p uniformly at random, is contained in C.

PrINCIPLE 1. There exist C; € Ry and ¢ € Z~, such that

#C

PPe O ez

< C1N“/V4q

for all choices of ¢, N and C as above.

We use the word ‘Principle’; because, to our knowledge, no complete proof of this statement
has been published in the literature. Nevertheless, it is commonly accepted and extensively
confirmed by experiment. It is generally believed to follow from the work of Katz and Sarnak
[20, Theorem 9.7.13]. A strategy of proof was communicated to us by Katz, and essentially
matches with the approach of Achter [2, Theorem 3.1], who proved Principle 1 under certain
mild restrictions on ¢ and N (using ¢ = 3). However, a more classically flavored proof of
Principle 1 can be obtained by applying Chebotarev’s density theorem [13, Proposition 6.4.8]
to the function field extension F,(j) C Fq({n)(j) C Fq(Cn)(X(N)), where (ny is a primitive
Nth root of unity, and the latter extension corresponds to the modular cover X (N) — X (1),
which is known to be defined over Fy((y). This approach has recently been elaborated in a
preprint of Castryck and Hubrechts [9].

Principle 1 indeed allows one to rediscover the asymptotics of Theorem 4, by counting the
matrices M € GLép) (Fy) satisfying p + 1 — Tr(M) = 0. We leave this as an exercise.

4.2. The general case

Let F, and N be as before, and let F, be an algebraic closure of F,. Let C/F, be a complete
non-singular curve of genus g > 1 and denote by A = Jac(C) its Jacobian. Then ¢th power
Frobenius defines an endomorphism of the 2g-dimensional Z/(NN)-module A[N] of N-torsion
points on A. Instead of considering all bases, we can make a more canonical choice by restricting
to symplectic bases. We briefly review how this works.

We employ the following notation and terminology. For any n € N, I,, denotes the n x n
identity matrix, and €2 denotes the 2g x 2¢g matrix

0o 1,
~1, 0)°

Spag(Z/(N)) = {M € GLag(Z/(N))|'"MQM = O}

The group

is called the group of symplectic 2g x 2¢g matrices, and
GSpyy(Z/(N)) = {M € GLgy(Z/(N))|3d € Z/(N) such that EMQM = dQ},
is referred to as the group of symplectic similitudes. It is naturally partitioned into the sets

GSPS(Z/(N)) = {M € GLyy(Z/(N))[' MQM = dQ2},
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1246 W. CASTRYCK ET AL.

with d ranging over (Z/(N))*. An element of GSpg‘;)(Z/ (N)) is called d-symplectic. Note
that 1-symplectic and symplectic are synonymous. A classical trick using the Pfaffian shows
that the determinant of a symplectic matrix is 1. Hence the determinant of a d-symplectic
matrix is d9.

Symplectic matrices pop up in the study of skew-symmetric, non-degenerate bilinear pairings
on, in our case, 2g-dimensional (Z/(N))-modules. Such pairings are often called symplectic
forms. For any choice of basis, one can consider the standard symplectic form (-, ), defined by
the rule

(v, w) = "vQw.

Given any symplectic form, one can always choose a basis with respect to which it becomes the
standard symplectic form: such a basis is called a symplectic basis or a Darboux basis. If one
switches between two symplectic bases corresponding to the same symplectic form, the matrix
of base change is symplectic, and conversely.

Now for each primitive Nth root of unity (N € I_Fq, the Weil pairing

en + A[N] x A[N] — (Cn),
when composed with the (non-canonical) map
(Cn) — Z/(N) : Cy — 4,

is a skew-symmetric and non-degenerate bilinear pairing on A[N]. A corresponding symplectic
basis Pi,..., Py, Q1,...,Qy is characterized by the properties

en(Pi, Q) =Ny en(P, Pj) = en(Qi,Qj) =1
foralli,j € {1,..., g}, where §;; is the Kronecker symbol. Because of the Gal(F,, F,)-invariance
of the Weil pairing, one has that

eN(PU7QU) = eN(P7Q)q3

where P and ) are arbitrary points of A[N] and o is gth power Frobenius. Then bilinearity
implies that the matrix F' of o with respect to Pi,..., Py, Q1,...,Q, satisfies

PFQF = ¢,

that is, F' is ¢-symplectic.

As mentioned above, a different choice of symplectic basis yields a matrix obtained from
F by Spy,(Z/(N))-conjugation. Next, if (x is replaced by another Nth root of unity (3,
jE€(Z/(N))*, then Pi,..., Py [j]Q1,...,[j]Qq is a symplectic basis, and the matrix of

Frobenius is dedj_l7 where
_ (L O
4 <0 ﬂ[g> '

Since Spy,(Z/(N)) and the matrices d; generate GSp,,(Z/(N)), we conclude that we can

unambiguously associate to C' an orbit of GSp(Q';)(Z/(N)) under GSp,,(Z/(N))-conjugation.

We are now ready to formulate the hyperelliptic curve analogue of Principle 1. Let char
Fy, > 2 and g > 1. For any union of GSp,,(Z/(NV))-orbits C C GSpg;)(Z/(N)), let P(FyCC)
denote the probability that the orbit associated to the complete non-singular model of the
(hyper)elliptic curve y? = f(x), where f(z) € F,[z] is chosen from Ha, 2 uniformly at random,
is contained in C.
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PrINCIPLE 2. There exist C; € Ry and ¢ € Z~, such that
#C
#GSpS? (Z/(N))
for all choices of g, N and C as above, provided that N is odd as soon as g > 2.

P(]:f cC)—

CiN°/\/q

The condition N odd is due to the fact that we restrict to hyperelliptic curves, which as
soon as g > 2 behave non-randomly with respect to 2-torsion (see Section 6). If instead we
considered Jacobians of arbitrary curves (for example, in the sense of Section 1.8), we expect
that this condition could be dropped.

Again we use the word ‘Principle’, because no complete proof of this statement has appeared
in the literature to date. But again, this presumably follows from the work of Katz and Sarnak
[20, Theorem 9.7.13], as elaborated by Achter [2, Theorem 3.1] under mild restrictions on ¢ and
N. In his case, the exponent reads ¢ = 2g% 4 g. Achter’s result is sufficiently general for many
of our needs below. In particular, it is sufficient for generalizing Theorem 4 to (hyper)elliptic
curves of arbitrary genus g > 1, which is done in Section 6. Also note that Achter uses Hy o
rather than Hago.

5. Counting matrices with eigenvalue 1

For use in Sections 6 and 9, we study the following general question: given a prime power
q, a prime £{ ¢, an integer g > 0 and d € {0,...,2g}, what is the proportion B(q, ¢, g,d) of
matrices in GSpé‘f} (F¢) for which the eigenspace for eigenvalue 1 is d-dimensional? Lemma 3
transfers this question to the classical groups Spy,(F¢) and GL,(F,). Let Bs, (¢, g,d) be the
proportion of matrices in Spy, (IF;) having a d-dimensional eigenspace for eigenvalue 1, and let
PBar (4, g,d) be the corresponding proportion for the general linear group GL4(F,), where of
course Par, (¢, g,d) = 0 assoon as d > g. We include g = 0 because of the recursive nature of the
arguments below. In this, we assume that GSpgq) (Fy) = Spy(Fe) = GLo(F,) contains a unique
matrix and that its 1-eigenspace is O-dimensional. In particular, (g, ¢,0,0) = Ps,(¢,0,0) =
PBer(4,0,0) is understood to be 1.

LeMMA 3. If ¢g=1mod¥, then P(q,l g,d) =Psp(l,g9,d). If g#1mod¥, then
%(Q7£?g7d) = mGL(£’97d>~

Proof. The first statement is a tautology. So, assume that ¢ £ 1 mod £. We follow ideas of
Achter and Holden [3, Lemma 3.1], which in turn build upon work of Chavdarov [10].

First, for r =0,..., g, let S(g, ¥, r,d) be the subset of GSpqu) (Fy) consisting of those matrices
having characteristic polynomial (x —1)"(z —¢)" and whose l-eigenspace has dimension
d. Similarly, let Sqr,(¢,r,d) be the subset of GL,(F,) consisting of the matrices having
characteristic polynomial (x — 1)" and whose 1-eigenspace has dimension d.

We will prove that
_ #Sp2T(F‘€)

#GLT(FE)
By Jordan—Chevalley decomposition, every element B € S(q,¢,r,d) can be uniquely written
as the commuting product of a semisimple matrix By and a unipotent matrix B,,. Necessarily,
B € GSpgﬂ,) (F;) has as characteristic polynomial (z —1)"(z —¢)" and B, € Sp,,(F;) has
as characteristic polynomial (z —1)?". By [10, Lemma 3.4], two such matrices By must
be conjugated by an element of Sp,, (Fy). It follows that for fixed Bs, the number of

#S(q,@, T, d) ’ #SGL(& Ty d) (1)
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corresponding instances of B in S(q,¢,r,d) is always the same. Since one instance of By is
diag(1,1,...,1,9,q,...,q), whose centralizer in Sp,, (F,) equals

{ (fgf t(]\fl>> ’ Me GLT(M} ,

the number of possibilities for By is (#Sps, (F¢))/(#GL,(F¢)), and for each B, there are
Sar(¢,r,d) appropriate choices for B,,. The claim follows.

Now, let T'(q, ¢, g, d) be the set of matrices of GSp(Q) (F¢) having a d-dimensional 1-eigenspace,
thus #7'(q, ¢, g,d) = P(q, 4, g,d) - #Spoy (Fr). We W111 count the elements M € T'(q,¢,g,d)
separately for each value of 7, the order of vanishing at 1 of the characteristic polynomial fj; of
M. To M, one can associate a decomposition of the standard symplectic space F?g , (-, ) of the
form Us, & Va(g_r), where Ua, and V5(,_,) are M-invariant symplectic subspaces of dimensions
2r and 2(g — 1), respectively, satisfying Iy, = (x —1)"(x — q)" and fM\Vmgfr) (1) # 0. Then

#Spgg(Ff)
l
#T(q,¢,9,d Z#Sp% (Fe) - #Spa(g—ry (Fe)

: #S(Qaev T, d) ! #T(qagvg -, O)a

where the first factor corresponds to the number of ways of decomposing ]F?g , (-, ), the second
factor counts the number of possible actions of M on Us, and the third factor counts the
number of actions of M on Vy(,_,y. We conclude that

#S(q,¢,r,d)
7€ 9 76, - ’I",O . 2
Bla.L,9,d Z Top, (7 Platg—r.0) (2)
Along with
g
> Blg.l.g,d) =1, (3)
d=0

one sees that, given the values #S5(q,¢,r,d), the recursive equation (2) determines all
PB(g, ¢, g,d) by induction on g: first one determines P(q,¢,g,1),...,%B(q,4, g,9), during which
one should use that #5S(q,¢,0,d) =0 as soon as d > 0, and then one uses (3) to obtain
P(a. 4. 9,0).

The statement then follows by noting that one similarly has

g
mGL( y 9 ) - Z #SGL(&T.’d) : YBGL(&Q -, 0)5

r—0 #GL, (Fe)

along with the same initial conditions. Thus by (1), the probabilities B(q, ¥, g,d) and
PBar(l, g,d) are solutions to the same recursive equation. By uniqueness, they must coincide.

O

Now for the classical groups Sp,,(F¢) and GL4(F), these proportions have been computed
before. Parts of the following result have been (re)discovered by several people (see, for example,
(1, 11]), but the first to obtain closed formulas for both Ps, (¢, g, d) and Par, (¢, g, d) seem to be
Rudvalis and Shinoda, in an unpublished work of 1988 [30] that was reported upon by Fulman
[14, 15] and, more recently, Lengler [24] and Malle [26].
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THEOREM 5. One has
1 —1)igl*=9)/2
log,d) = . - ,
Farlbo: D) = gaL,m ;Edﬂ-#GLAM
& >

gILH;C%GL(&%d) = m : U(l —t7),

j=1
Boplligd) = o ST VO o
g, ) = : - 1 = 1s even,
ST o) & f?ﬂk~#8p2j<m>
g—k—1 T S
—1)7¢ +J ) )
fd=2 1
PBsp(l, g,d) = PR #Sp% Fo) JXZ:O £2J(k+1) #5p5,(Fr) if d =2k + 1 is odd,
—d(d+1)/2
lim Psy, (€, 9,d) = ———— - | [ +¢7)7!
gee 11— ) jljl

Proof. Proofs can be found in [14, Theorem 6] (for everything on the general linear group),
and in [15, Corollary 1] (for the closed formulas for g, (4, g, d)) and [26, Proposition 3.1] (for
the limit of the latter). The proofs of Fulman [14, 15] use the cycle index method, for which, in
the symplectic case, the author assumes that ¢ is odd. However, in the meantime, the required
theory on cycle indices has been extended to arbitrary characteristic [16]. The original proof
of Rudvalis and Shinoda [30] uses integer partitions and works in full generality. U

Along with the well-known identities
g
H#GL,(F,) = ((9°~9)/2 H —1) and  #Sp,y,(F) = H (% — (4)
Jj=1 j=1
(see, for example, [22, Formula (2.9) and Theorem 3.2]), Lemma 3 and Theorem 5 yield explicit
formulas for each PB(q, ¥, g, d).

Since the work of Rudvalis and Shinoda cannot be easily accessed, for the sake of self-
containedness, we include an independent computation of (g, ¢, g, d) for the case where d = 0.
For the purposes of this article, this is the most prominent case, as we will see in Section 6. At
the end of this section, we will study the convergence behavior for ¢ — oo in more detail.

It is convenient to consider instead Q(q,¢,g) = 1 —PB(q, ¢, g,0), the proportion of matrices
of GSp(q) (Fy) for which 1 does appear as an eigenvalue. We prove the following theorem.

THEOREM 6. With notation as above, for g > 0, we have

Zﬁnl—ﬂ?j)_l if 0] q—1,
Aalg)=q o (5)

fZH(kzj)fl if0fq—1.

r=1j=1

Proof. Our starting point is the following recursion formula due to Achter and Holden
[3, Lemma 3.2], the proof of which was our source of inspiration for Lemma 3: one has

(g, 4,7)
Q(q.4,9) Z#Sp% (L Q@ Lg =),
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1250 W. CASTRYCK ET AL.
where
e if 0] q—1
S(Qaear) = 72— #Spo,.(Fe) . '
0 7#(;1)&(%‘;) iflfqg—1

and Q(g,¢,0) = 0. Clearly, this determines (g, ¢, g) uniquely for all g. Using (4), this can be
rewritten as

g T
St -2l tg—r) [ -1 it g—1,
Q((Lév g) = r;l ) =t r (6)
SR - Qg g -r) [ -7 i lfg—1
r=1 j=1

We will prove by induction on g that (5) indeed solves the recursion. We only consider the
case £1q— 1 (the necessary adaptations for the case ¢ | ¢ — 1 are straightforward). Define
P:=1I;_,(1 = ¢7)~" for r > 0. After rearranging terms and using the induction hypothesis
for g — 1, one finds with some trivial computations that it suffices to prove

g—1

-P, = 099~ 1/2 (_1)9. P, + Z”(Pl)ﬂ (=) - PPy, (7)
r=1
We are left with showing that with
k
S = ZTT where T, := (—1)" - =02 p P,
r=0

we have S; = 0. This, however, follows from the observation that
Sp = (=1)F - hEAD2 pp (1= 49)7h (1097,

which can be shown easily using induction on k. Indeed, then S, = 0, because its last factor is
Zero. |

Next, we study the limiting behavior of Q(q, ¢, g) as g — oo. Define

oo

-1
E(q,l,g) = o~ .
T (1) -Rts) ittt

=1

Then we have the following theorem.

THEOREM 7. With notation as above, we have

[e%s) 1 —1 )
1—H(1+@-> if 0] q—1,

lim Q(q,/,9) = = .
g—00 .
1_~H1<1_”) if 0fq—1.
i

Moreover, this convergence is alternating, that is,
lim £(q,¢,9) =0 and (-1)E(q,¢,g9) >0
g—00

for each g > 0.
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Proof. 'We make use of the well-known “g-series” identity
n(n 1) /2

ZW—H (1 + z2") (8)

n=0

(see, for example [18, 11.2]). Here (a;z), := HJ 0 (1 — azJ) is the Pochhammer symbol.
Although we refer to identities from the theory of “g-series”, we use the variable z here instead,
in order to distinguish with the prime power ¢ used previously. It is not hard to show that (5)
is equivalent to

T2 T

g
Z if 0]q—1,
g r(r+1)/2( )7‘

R P S T Y
r—1 (sz)r

(g, 4, 9) =

where z = ¢~ 1.
If £+ q— 1, it immediately follows that

& r(r+1)/2 r e o0 1
Jim Q(z, L) = Z: - [[0 - Jl(y_@), ()
where we used (8) with 2z = —z. To show the convergence is alternating, we have by definition

of £(q,¢,¢g) and Theorem 6, that

g(‘]aga g) - Z H(l 7€j)713 (10)

r=g+1j=1
which tends to 0 as g — co. We observe that consecutive summands in (10) add to

(1) (CU (e - 9) )
D=0 [Ihe-1n  Ihe-1n
Now r > 1 and ¢ is prime so that (11) is positive if and only if (—1)""* > 0, which holds if and
only if 7 is odd. The sum in (10) begins with an odd index if and only if g is even or g = 0,
which shows that (—1)9€(q, ¢, g) > 0.
If ¢| ¢ — 1, then we conclude similarly that

%} 2 oo
. 2 (-1)" 2n—1
| lg)=— ——=1- 1—2"
gLHoloQ((L 59) ; (ZQ;ZQ)T };[1( z )
o0 o0 1 —1
=1- 14+20)"1=1- (1+) ,
Hoemm=r- 1 g
by replacing z by 22, and setting = —z. To show the convergence is alternating, we have by

definition of (g, ¢, g) and Theorem 6 that

E(q, 4, g) Z z’"H — (%)~ (12)

r=g+1 j=1
which tends to 0 as g — co. We observe that consecutive summands in (12) add to
(—0)" (—0)r+1 (—0) L (2r+2 — 1 — p)
IR T e R T R VA T
Again because 7 > 1 and £ is prime, we find that (13) is positive if and only if (—1)"*! > 0, so

by the argument given in the previous case when ¢4 ¢ — 1, we have that (—1)9&(q,¢,¢g) > 0 in
this case as well. Ul

(13)
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1252 W. CASTRYCK ET AL.

6. A generalization of Lenstra’s theorem

With Principle 2 in mind, generalizing Lenstra’s Theorem 4 boils down to counting matrices
M e GSpg;) (Fy) having 1 as an eigenvalue. Indeed, the Jacobian of a curve C/F, will have a
rational ¢-torsion point if and only if Frobenius acting on Jac(C)[¢] has a fixed point, that is,
an eigenvector with eigenvalue 1.

More formally, for every positive integer g > 1, and for each pair of distinct primes p > 2
and £, let P(p, £, g) be the probability that the Jacobian of the (hyper)elliptic curve y? = f(x),
with f(z) € F,[x] uniformly randomly chosen from Hqy19, has rational ¢-torsion. Assume that
¢ is odd. Then according to Principle 2, there exist C; € Ryg and ¢ € Z~(, independent of
p and ¢ (but depending on g), such that

|P(p7€ag) - Q(paga g)| g Olgc/\/ﬁ7

where Q(p, ¢, g) is defined in Section 5. This can be considered a proven statement: Achter’s
proof [2, Theorem 3.1] covers the case where F, is a large prime field. Therefore, we conclude
the following.

THEOREM 8. There exist C; € R~ and ¢ € Z~q, such that

g T
P(p.t,g)+ > ¢ [[a-¢) 7t <cue/yp it p—1
r=1 j=1
and
g T )
P(p,t,9)+ Y [[a-)t <cuwe/yp iftip—1
r=1j=1

for all pairs of distinct primes p,{ > 2.

Theorem 8 is invalid for ¢ = 2: as soon as g > 2, hyperelliptic curves behave unlike general
curves with respect to 2-torsion. But we can estimate P(p,2,g) using the following slightly
simplified result of Cornelissen [12, Theorem 1.4].

THEOREM 9 (Cornelissen). Let f(x) € Hagto. Then the Jacobian of the hyperelliptic curve
defined by y? = f(z) does not have F,-rational 2-torsion if and only if

(i) (g odd) f(z) factors as a product of two irreducible polynomials of odd degree;
(ii) (g even) f(x) factors as a product of two irreducible polynomials of odd degree, or f(x)
is irreducible itself.

Using that a polynomial of degree d > 1 over [, is irreducible with probability approximately
1/d, we obtain the following estimates.

COROLLARY 1. If g is odd, then

(9-1)/2
P(p,2,9) —1— >

Jj=0

1 1
2j+1 29+2—(2j+1)

as p — o0,
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whereas if g is even, we have

9/2

2 1 1
P(p,2,g) —1— —F— — . . . as p — 0.
(p,2,9) (29 + 2)2 gzwrl 29+2—(2j+1) P

In particular, we have
lim P(p727g):17

g,p—0

hence Theorem 2 holds.

Note again that for g € {1,2}, where the random matrix heuristics are assumed to apply
(and in fact provably do for £ =2 (see Corollary 2 for g = 2, exercise for g = 1)), we obtain
P(p,2,1) = % and P(p,2,2) ~ 26/45, which is the same as if we would have evaluated the
second formula of Theorem 6 in ¢ = 2.

We are now ready to derive Conjectures 2 and 8 and to prove Lemma 2.

Derivation of Conjecture 2. Let IF,, be a large prime field and let ¢ be a prime different
from its characteristic p. From Theorem 6, we see that the probability that the Jacobian of
y? = f(x), with f(x) chosen from Hg uniformly at random, has a rational point of order ¢ is
approximately

4 2
Mif[“)_l and -2
e+ —1)(2-1) (Z2-1)¢-1)

Note that because g = 2, these limiting probabilities are also valid for ¢ = 2. Applying the
heuristics from Section 3 then yields the requested formula for ¢,. One new point of concern
is that ¢(p), which should now be the largest prime for which ¢(p) < (\/p +1)?, exceeds p.
Therefore, we should take into account the contribution of ¢ = p. But since we take p — oo, it
suffices that the probability of not having p-torsion tends to 1. This follows from Principle 3
(Section 10).

ifltp—1.

Proof of Lemma 2. This is entirely analogous to the proof of Lemma 1. |

Derivation of Conjecture 8. Applying our heuristics, using the probabilities given in
Theorem 7, we obtain
o= I [, 0 -1/¢) I [[Z, (1 +1/6)7"
p_a L 1= 1-1/¢ '
p—

Note that we also use these probabilities for £ = 2, since we expect the random matrix statement
from Pinciple 2 to apply in arbitrary level N (in the current, more general framework of selecting
curves from M, uniformly at random). Rearranging factors gives

o-TI(-2) T (-2)

¢ j=2 fp—1j=1

lp—1

from which the requested formula follows.

We remark that the average setups (Lemmas 1 and 2) can be thought of as taking matrices
at random from GSp,, (Fy), rather than GSng) (Fy).

It is interesting to note, using Theorem 7, that as the genus g grows, the average value ¢,
oscillates, but converges rapidly to its limiting value. This is illustrated numerically in Table 1.
Of all genera, elliptic curves disfavor prime orders to the biggest extent, and the Jacobians of
genus 2 curves disfavor prime orders to the least extent.
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TABLE 1. Value of ¢, for growing genus, that is, the constants appearing in Lemmas 1 and 2,
and their higher genus analogues.

g Cp

0.50516617
0.69463828
0.68851794
0.68857163
0.68857149
0.68857149
0.68857149

N O Uk W

7. The case of a rational Weierstrass point

In many applications, often cryptographic, one restricts to genus 2 curves of the form y? = f(x),
where f(z) is chosen from

5 ={f € Fy[z]|f monic and square-free, deg f = 5}

uniformly at random. Stated more geometrically, one restricts to genus 2 curves having a
rational Weierstrass point. However, the latter description is not free of ambiguities. Namely,
consider the notion of randomness in which f(x) is taken from

Hé>0) = {f € Fy[z]|f square-free,deg f =6, 3a € F, : f(a) =0}

uniformly at random. Then this is fundamentally different from the H:' setting. To illustrate

this: the probability that the Jacobian of a randomly chosen curve has even order tends to % =
0.8 with respect to Hg, whereas it tends to % ~ (.68 with respect to Hé>0). Both statements
will be proved below.

The main conclusion of this section will be, however, that the distribution of Frobenius
acting on any odd-torsion subgroup of the Jacobian is barely affected by this ambiguity. In
Section 7.2, we will show the following.

THEOREM 10. Let N be an odd positive integer, let ¢ be an odd prime power coprime to N
and let 'H be either HY, Hé>0) or Hg. For any subset C C GSpff)(Z/(N)) that is closed under
GSp4(Z/(N))-conjugation, let P(Fy C C) be defined as in Section 4.2, where now f is chosen
from H uniformly at random. If Principle 2 holds, then there exist C; € Ry and ¢ € Z~q such
that

#C
#GSp{?(Z/(N))

P(F;cC)— <CiN“/\Va

for all choices of g and C as above.

For ‘HE', we remark that it is presumably possible to prove Theorem 10 directly from Katz—
Sarnak [20, Theorem 9.7.13], that is, independently of Principle 2, in the same way as a proof
of Principle 2 is expected to work, using that the family corresponding to HE' has the largest
possible monodromy group [20, 10.1.18].

As an immediate application, one obtains:

Heuristic derivation of Conjecture 3. By Theorem 10, we only need to replace the factor

38 corresponding to the prime ¢ = 2, by % So the correcting factor is 1—99.

457
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7.1. Rational 2-torsion in genus 2

Some material in this section has appeared in the literature before, see, for example, [6,
Section 2].

LeEMMA 4. Every non-trivial 2-torsion point on the Jacobian of a genus 2 curve over F,
(thought of as a divisor class) contains a unique pair of divisors {P; — P;, P; — P;}, where P;
and P; are distinct Weierstrass points.

Proof. 1t is obvious that P; — P; and P; — P; are linearly equivalent and that they map
to a 2-torsion point on the Jacobian. By Riemann—Roch, this point is non-trivial and two
different pairs give rise to distinct 2-torsion points. Since there are 15 non-trivial 2-torsion
points on the Jacobian of a genus 2 curve, and since there are 15 pairs in a set of 6 elements,
the correspondence must be one to one. |

We immediately obtain (compare with Theorem 9) the following.

LEMMA 5. The Jacobian of a genus 2 curve over F, defined by an equation of the form
y? = f(x) with f € HI (resp. f € Hg) has a non-trivial rational 2-torsion point if and only if
f is reducible (resp. [ has a factor of degree 2).

Proof. By Lemma 4, there exists a non-trivial rational 2-torsion point if and only if there
are Weierstrass points Py and P, such that {P;, P»} is closed under gth power Frobenius. [J

This allows us to estimate the probability that the Jacobian has even order.

LEMMA 6. Let fi* € HP, é>0) S Hé>0) and fg € Hg be chosen uniformly at random. Let
cy, C’é>0) and Cg denote the corresponding genus 2 curves. Then as ¢ — 00
(i) P(#Jac(CH)(Fy) is even) — %;
(i) P(#Jac(Cs)(F,) is even) — 22;
(iii) P(#Jac(CS™")(F,) is even) — 311,

Proof. 'We leave this as an exercise, or refer to Table 2. ]

We will now describe the symplectic structure of the 2-torsion subgroup in more detail. Fix

a genus 2 curve C/Fy and let Py, ..., P be its Weierstrass points. Following Lemma 4, every
non-trivial element of Jac(C)[2] can be identified with a unique pair of distinct points { P;, P;},
and the group structure can be described by the rules

{Pi, P} +{P;, P} =0

(P, P} +{b, P} ={P;, P} ifj#k

{P;, P;} + { Py, P;} = {remaining two points} if {i,j}N{k, ¢} =0.
The Weil pairing can be seen to satisfy

e2({Pi, P}, { Py, Po}) = (-)#UI84

for all 4,5, k, 0 € {1,...,6}.
We use this to prove the following.
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TABLE 2. Factorization patterns of f(x) € He, H5 and the corresponding
Frobenius conjugacy classes.

He HE Conjugacy classes of Sp,(F2)
Pattern Probability Pattern Probability Representant Size Order  Fg-rank  Trace
1 1101
6 ~— (9 1o }) 120 6 0 0
6 0011
1 1 0110
5.1 ~L 5 ~t (g 01 9) s 0 1
5 5 1101
1 0100
4,2 ~= <(1) 99 9) 90 4 1 0
8 1010
1 1 1011
4,11 = 4,1 =~ (5 ¢ }) 90 4 1 0
8 4 1111
1 1011
33 ~ L <g 11 g) 0 3 0 0
18 1100
1 1 1100
32,1 ~— 3,2 ~— <g 1 }) 120 6 1 1
6 6 1111
1 1 1000
3,1,1,1 ~— 3,1,1 ~— (gg%) 40 3 2 1
18 6 0101
1 0001
2,2,2 ~— <(1)9(1)9> 15 2 2 0
48 1000
1 1 0010
2,2,1,1 ~— 2,2,1 ~— (9588) 45 2 2 0
16 8 0101
1 1 0110
2,1,1,1,1 ~— 2,1,1,1 ~— <(1J 19 g) 15 2 3 0
48 12 1111
1 1 1000
1,1,1,1,1,1 N 1,1,1,1,1 ~—— (gé?g) 1 1 4 0
720 120 0001

For instance, the pattern 3,1, 1,1 means that f(z) € He factors into three linear polynomials and one
irreducible cubic polynomial. The probability of this event is approximately % C31T = 1—18. The
corresponding conjugacy class of Frobenius is generated by the depicted matrix and contains 40 elements.
Every such element has order 3 and trace 1, and its eigenspace for eigenvalue 1 is two-dimensional

(that is, dim Jac(C)[2](Fq) = 2).

.
=

THEOREM 11. Let g be an odd prime power. There exist Wy, ..., Ws C Sp,(F2) such that
for any curve C/F, of genus 2, any symplectic basis of Jac(C)[2], and any r € {0, ...,6}, the
matrix F' of qth power Frobenius with respect to this basis satisfies

F € W, if and only if C has r rational Weierstrass points.
The cardinalities of the W, are 265,264, 135,40,15,0 and 1, respectively.

Proof. There exist six subsets U C Jac(C')[2] that are maximal with respect to the condition
that uy,us € U and uy # ug implies ea(ug, ug) = —1, namely

Ui={{P,P}|je{1,2,....6}\ {i}} fori=1,...,6.

Since N = 2, the choice of a primitive Nth root of unity is canonical, hence the Weil pairing
defines unambiguously a symplectic pairing on Jac(C')[2]. After having fixed a symplectic basis,
every symplectic matrix induces a permutation of {Uy,...,Us}. In fact, this induces a group
isomorphism Sp,(F3) — Sym(6). Indeed, it is easy to see that the above induces an injective
group homomorphism, and surjectivity follows from #Sp,(Fs) = #Sym(6) = 720. Then the
sets W, are the pre-images under this isomorphism of the set of permutations having exactly
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r fixed points. While the isomorphism depends on the choice of symplectic basis, the sets W,
do not, because they are invariant under conjugation. |

Pushing the argument a little further, one actually sees that the conjugacy class of Frobenius,
which under the above group isomorphism corresponds to a conjugacy class of Sym(6), is
completely determined by the factorization pattern of f(z), and conversely. Note that there
are 11 conjugacy classes in Sym(6) = Sp,(F2) and that there are 11 ways to partition the
number 6. Since the probability of having a certain factorization pattern is easily estimated
using the well-known fact that a polynomial of degree d is irreducible with probability about
1/d, this unveils the complete stochastic picture of Jac(C')[2], as shown in Table 2.

COROLLARY 2. Principle 2 holds for g = N = 2.

Proof. This can be read off from Table 2. The only additional concern is the bound on the
error term, but this is easily verified. O

7.2. Equidistribution in odd level

In this section, we will prove Theorem 10. Consider f € H(>0), so that y? = f(x) defines a
genus 2 curve having a rational Weierstrass point (a,0). Then the birational change of variables

Y

1
re— —+a and y<— —,
x x

transforms this into y? = f/(x) with f’ € Hs. This leads us to defining a relation

p C H((;>O) x Hs
associating to f € Hé>0) all polynomials of Hs, that can be obtained through the above
procedure. However, this correspondence is not uniform, because of the number of choices
that can be made for a, that is, the number of rational roots of f. This is the reason why the
notions of randomness with respect to Hs (or H2) and Hé>0) are fundamentally different, as
reflected in Lemma 6.

We are led to introducing the following notation. For r € {0,...,6}, define

(T) = {f € F,[z]|f square-free,deg f = 6, f has precisely r rational zeroes}
so that

6
Ho=| |HY and MY = |_| M (14)

Similarly, for € {0,...,5} we introduce

(T) = {f € F,[z]|f square-free of degree 5, f has precisely r rational zeroes},

so that
5
= | n.
r=0

Note that Hé5) and Hgl) are empty. We implicitly omit these sets to avoid probabilities of the
type g. Similarly, we assume that ¢ > 6 so that none of the other sets is empty.

Now because of (14), to prove Theorem 10 for Hé>0), it suffices to do so for each H((;)
(r=1,...,6). Similarly, by the discussion in Section 2, we can use Hs instead of Hp', and it
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is sufficient to prove Theorem 10 for HéT) (r=0,...,5) in this case. Finally, by Lemma 7, the
cases Hér) can in turn be reduced to the cases Hér).

LEMMA 7. Let Sy = {f € Hs|f(0) # 0}. For each r = 1,...,6, the restriction of p to
H x (HU ™Y 1 Sp)

is uniform.

Proof. This is immediate. ]

We are now ready to prove Theorem 10.

Proof of Theorem 10. By the above discussion, it suffices to estimate the conditional
probabilities

P(F;cCand feH)
P(f e M)

for r=1,...,6. By Theorem 11, f € Hér) is equivalent to saying that the conjugacy class
of Frobenius, acting on the 2-torsion points of the Jacobian of y? = f(z), is contained in W,..
Denote this conjugacy class by F¥ ». Similarly, let F¢ on denote the conjugacy class of Frobenius
acting on the 2/N-torsion points.

Since N is odd, we have a canonical isomorphism

GSp (Z/(2N)) = GSp{? (F2) @ GSp{? (Z/(N)),

allowing us to consider W, ¢ C as a subset of GSpflq)(Z/(QN)). Because it is the union of a
number of orbits under GSp,(Z/(2N))-conjugation, there exist C; € R and ¢ € Z~g, such
that

P(F;ccClfeH) =

W, & C
P(]‘-f’gNCWTEBC)— #(( ) © ) <ClNc/\/§ (15)
#GSp," (Z/(2N))
for all choices of ¢, N and C. In particular, for N = 1, this gives
r #W,
P(fen))- —TZ—|<C1/va (16)
#GSp{? (I)
Since
P(Fran CW,@C) = P(Fr CCand Fry CW,) = P(Ff CCand f € 1)
and

W80 #W 4
#GSp{ (Z/(2N))  #GSpi'(F>) #GSpi” (Z/(N))
inequality (15) can be rewritten as
 #W,/#GSPY (Fa) #e ‘ _ _ONY/va
P(feny)  #aSp(z/(N) | P(feny)
It follows from (16) that there is a Cy € RT such that

P(Fycclf e HD)

r #C
P(FycClf € H) - <N/
#GSpi? (Z/(N))
for all choices of g, N and C. This completes the proof. ]
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8. The number of points on the curve itself

Up to now we have focused entirely on the number of rational points on the Jacobian of a
curve. However, the random matrix framework allows us to consider the number of rational
points on the curve itself as well.

For any pair of distinct primes p > 2 and ¢, and any ¢t € Fy, we define the following constants:

aep = #{(x,y) € FS x (FN\N{=pPl(z +y/x)(1 +p/y) = t},

0B - ift =0,
Aprp = (€ = D)€ =2) +are,) + { L
0 otherwise,

By = 64(82 — 1)2,
T—5 ift=0,
0 otherwise.

Copi=C(U—1)(—0—1) + {

Note that, in general, it is impossible to find a closed formula for a4 , since it typically describes
the number of points on an elliptic curve over F, (though it is clear that ay ., lies close to £).
Let P(p,¢,t) be the probability that the number of rational points on the non-singular complete
model of the curve C' : y? = f(x), with f(z) chosen uniformly at random from Hg, is congruent
to p+ 1 — ¢ modulo /.

THEOREM 12. There exist C1 € R+ and ¢ € Z~, such that

 Avip+ B+ Cy
A0 (2-1)

P(p, ga t) < lec/\/f)

for all p,¢,t as above.

Proof. Because the trace of a matrix is invariant under conjugation, it suffices by Principle 2
(proved for ¢ odd by Achter [2, Theorem 3.1], and for £ = 2 in Corollary 2) to count the number
of matrices M in GSpip) (F¢) with trace t, and show that it equals Ay, + By + C¢ . Our main
tool is the following Bruhat decomposition of Sp,(F¢), proved by Kim [22]. Consider the group

P= { (’61 t’jBl)‘ A, B € F2*2 A invertible, B symmetriC} ) (17)

then we have the disjoint union
Sp,(F¢) = PU PoP U PoyP,
where
0 0
10 1
-1 0
0 0
For r € {1,2}, consider the subgroup
A, ={M € Plo,Mo;* € P}.
Then one can find unique representatives for the elements of Po, P by rewriting

Po,.P = Po,.(A\P),

where A\ P should be seen as a set of representatives of the right cosets of A, in P. This
implies that

|Po,P| = |P|-[A\P].
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One can prove (see [22]) that |A;\P| = ¢? + ¢ and |A5\P| = £3. Taking o = 14, the Bruhat
decomposition of Sp,(F,) implies the following partition of GSpElp ) (Fy):

2
GSpY” (F¢) = | | dypPo,P.
r=0

We will do a component-wise count of the number of matrices having trace t. First we observe
that

{M € d,Po,P|Tr(M) =t}| = |A\P| - {M € d,Po,.|Tr(M) =t}
for r =1, 2. Indeed, every element of d,Po, P has a unique representation of the form
dyMo,.N

with M € P and N € A,\P (where A, \P is thought of as a set of representatives of the right
cosets of A,). Using this representation, the map

d,Po,P — d,Po, : dyMo, N — dp(dglNdpM)ar

is surjective and [A,\P|-to-1. Since d,Mo,N and d,(d,'Nd,M)o, are conjugated, the
observation follows.

A matrix M € d,P can be written as (‘g p.{lAB—l) with A € GLy(F;) and B € IF?XQ
symmetric.

First, we consider Moy, whose trace equals —(AB)1 1 + Aaa + (p- 'A71)a.2, where the index
notation refers to the corresponding entries. Fix A and let B vary. Then because (AB);1 =
A11B11+ A12B>; and not both A; ; and A; > can be zero, we find that each trace occurs
equally often. We conclude that traces are uniformly distributed in d,Poy. Next, for Moy we
find that Tr(Mos) = —Tr(AB), which is uniformly distributed for all A not of the form ( °, §),
and which is zero if A does have this form. Using the above formulas for |A,\P| and using
|GLo(F,)| = €(¢* — 1)(¢ — 1), we find that the number of matrices in d,Po; U d,Poy having
trace ¢ equals By + Cl ;.

Finally, we consider M € d,, P when Tr(M) = Tr(A) + Tr(pA~'). We write A = (2 }) and let
d = ad — be be its determinant. Clearly Tr(M) = Tr(A) - (1 + p/§). There are £(¢£? — 1) matrices
A with determinant —p, in which case this trace equals 0. So suppose that § # —p. When a = 0
it is easy to see that we have uniform distribution, so we also suppose that a # 0. We can replace
d by (6 + be)/a and again, if b # 0 we will find uniformity. Finally the case b = 0 gives as trace

(a+6/a)(1+p/d),

so that an easy calculation shows that the number of matrices in d,P with trace ¢
equals Ay p. O

Table 3 gives the respective probabilities for various small £. Note that the probabilities of
C' and Jac(C) having an even number of rational points are the same, despite the fact that
these events do not coincide. Also note from Table 3 that trace 0 is favored. This is a general
phenomenon that can be seen as follows. It is not hard to verify that if 2¢(#2 — 16p) = 0 mod ¢,
the curve (z +y/x)(1 + p/y) = t in the definition of ay ., is reducible or has genus 0, in which
case agp can be explicitly computed. It is equal to zero if £ = 2. For ¢t = 0 mod ¢ and ¢ > 2
we can compute the following estimate for P(p, ¢, t):

O -0 B-i-1

AN -1 (172

if p is a square modulo ¢ and
O—00-0+0t Pi-1

AE—1)(e -1 A1
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TABLE 3. Distribution of Frobenius traces modulo small ¢ for y* = f(z),
with f(x) € He chosen at random.

pmod ¢\ t 0 1 2 3 4
(=2 1 2 19
45 45
s 1 o a a
128 128 128
) 58 5L 5L
160 160 160
s 1 3001 2960 2012 2012 2960
14976 14976 14976 14976 14976
, T 13 T2 T2 113
3744 3744 3744 3744 3744
, i} 12 3 713 12
3744 3744 3744 3744 3744
. 3001 2012 2969 2960 2012
14976 14976 14976 14976 14976

otherwise. Both probabilities are indeed larger than 1/4. If p =t2/16 mod ¢, and hence
t # 0 mod ¢, we obtain
e A A e e A A A |
A0 —1)(2 - 1) (et —1)(2-1)
if £ =1 mod 4, and when ¢ = 3 mod 4 we find
R A A e A A R A |
et -1)(2 -1) (=12 -1)

Heuristic derivation of Conjecture 4. The number of rational points on the curve defined
by y? = f(x) is divisible by ¢ if and only if its trace t is congruent to p + 1 mod ¢. Thus, by
Theorem 12, the probability that this number of points is not divisible by ¢ can be estimated by

ﬁ@,p
(4 —1)(2-1)’

where (), is as in Section 1.5. Dividing by 1 —1/¢ and taking the product then gives the
constant ¢, from Conjecture 4. The factor corresponding to ¢ = 2 can be read off from Table 3
(or from Table 2). When switching from Hg to Hs, following Theorem 10 and using Table 2,
we should replace the factor % by %

9. The probability of cyclicity

In this section, we will estimate the probability P(p, g) that the group of rational points of the
Jacobian of the (hyper)elliptic curve C': y* = f(z), with f(z) chosen from Hoyto uniformly
at random, is cyclic. This question is of a different type than those we have considered so
far. We use the following heuristic reasoning. Note that Jac(C)(F,) is cyclic if and only if
Jac(C)[¢](Fp) is cyclic for each prime ¢. The probabilities of the latter events can be estimated
using Principle 2: for each £ # p, this is approximately

B, 4, 9,0) +PB(p, £, 9,1),

where the notation from Section 5 is used. For a reason similar to the one explained in the
derivation of Conjecture 2 in Section 6, we will omit the contribution of ¢ =p. Then the
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TABLE 4. Average conjectured probability of being cyclic for growing genus.

Factor

Q

0.81375191
0.80882586
0.80924272
0.80923674
0.80923677
0.80923677
0.80923677

N O Uk W

idea is to assume independence and naively multiply these proportions. As suggested by our
experiments in Section 11, this gives accurate predictions for g € {1,2}. In particular, an effect
of the type reflected in Mertens’ theorem seems absent in this non-relative setting. For g = 1,
the heuristics confirm a formula proven by Vladut [34, Theorem 6.1].

Heuristic derivation of Conjecture 5. The formulas of Theorem 5 for g = 2 give
-0 -0 -+ 2+ 0+1
2( 94 _ 2 _
B(p,£.2.0) + B(p. £,2,1) = e HE -1

1—m iflfp—1.

ifl|p—1,

Multiplying gives the conjectured formula. If we switch from Hg to HE', the leading factor %

should be replaced by %, as can be read off from Table 2.

Proof of Theorem 3. This is analogous to the proof of Theorem 2 (see Corollary 1). In
fact, the original version of Cornelissen’s Theorem 9 [12, Theorem 1.4] is much stronger and
describes the rank of Jac(C)[2](FF,) in terms of the factorization pattern of f(x). For example,
it suffices that f(x) has at least four distinct factors for the rank to be at least 2. From this,
one verifies that for g — oo, this rank will be 2 or larger with a probability converging to 1. []

Heuristic derivation of Conjecture 9. This is a combination of the derivations of
Conjectures 5 and 8, the details of which we leave to the reader.

As in the case of primality, we list the average values (in the sense of Conjecture 1.3) of the
probabilities of cyclicity for growing genus in Table 4. Again one notices that the convergence
is alternating (although we did not elaborate the details of a proof of this) and fast.

10. Extension fields

In this section, we briefly discuss how our heuristics can be adapted to the setting of finite
fields F,» of growing extension degree, over a fixed prime field IF,,. In this situation, one can no
longer neglect the contribution of the prime ¢ = p.

Let C/F,» be a complete non-singular curve of genus g > 1 and, as before, denote by A =
Jac(C) its Jacobian. One has

Alp] = (Fp)"
for some 0 < 7 < ¢g. We assume that if & is large and one picks C' at random (for example, from

My = {curves of genus g over F,}/ =,
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uniformly at random), one has r = g with probability ~ 1. This is reasonable, because the
moduli space A, of abelian varieties of dimension g is stratified by rank, the stratum
corresponding to r = g having the biggest dimension [28, Theorem 4.1]. We do not claim
a proof of this assumption however, although for hyperelliptic curves this is a known fact
[4, 29]. If r = g, then the matrix of the p¥th power Frobenius acting on A[p] with respect to
any IFp-basis is an element of GL4(IF,). Thus, in that case, we can unambiguously associate to
C a conjugacy class of matrices of p*th power Frobenius, denoted by F¢. The expectation is
that for every union of conjugacy classes C C GL4(F),), the probability that F C C becomes
proportional to #C (as k — 00).

Returning to hyperelliptic curves, let P(F, C C) be the probability that the conjugacy class
of Frobenius associated to the hyperelliptic curve 4% + h(x)y = f(z), where (f, h) is chosen from
Hg+1,29+2 uniformly at random, is contained in C. As explained in Section 2, for p > 2, one
can assume h(z) = 0 and f(z) chosen from Hagyyo if desired.

PRINCIPLE 3. Let g € {1,2}. There exist C; € Ry and ¢ € Z~ such that

C
P(ff’hcc)_#Gi(Fp) <O1pc/\/l?

for all choices of p, k and C as above.

The assumption g € {1,2} is a ‘safety’ measure, because we do not feel comfortable with
the behavior of the hyperelliptic locus inside A, as soon as g > 2. In fact, even for g =2
some prudence is needed with respect to Principle 3: the literature seems to contain much less
evidence in its favor than in the cases of Principles 1 and 2.

In contrast, for g = 1, Principle 3 can be proved by applying the Hasse—Weil bound to the
Igusa curve Ig(p), whose Fx-rational points essentially parameterize pairs (£, P), where E/F
is an elliptic curve and P € E[p|(F,x). A more elementary but longer proof is given below. We
include it because we believe some intermediate statements are interesting in their own right
(in fact, we develop a version of [32, Theorem V.4.1], which is on the Legendre family, for
Weierstrass equations). First note that Principle 3 is trivial for p =2 and for p = 3; in the
latter case because quadratic twisting provides a bijection between the set of elliptic curves
having trace 1 mod 3 and the set of elliptic curves with trace 2 mod 3.

THEOREM 13. Let p > 5 be a prime number, let k > 1 be an integer and let t € {1,...,
p— 1}. Let S; be the set of couples in

S =Hap={(A B) € (F,.)*|4A* + 27B* # 0}

for which the trace T of the pFth power Frobenius of the elliptic curve given by y?> = x°® +
Ax + B satisfies T =t mod p. Then #S = p** — p* and

tii

‘# #S < 3pPh/2HL,

Proof. We leave it as an exercise to show that #5 = p?F — p*.

For each (A, B) € S, one has that 7" mod p equals the norm (with respect to I« /IF;,) of the
coefficient c4 p of 2P~ in

(z® + Az 4+ B)(P~/2

(see the proof of [32, Theorem V.4.1(a)]). Lemma 8 shows that for every v € F o the
polynomial cq g — 7 is absolutely irreducible when A and B are considered to be Varlables
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Now write S for the set of couples (A, B) € (F,x)? in which ¢4 p evaluates to an element
v € Fr \ {0} with norm ¢ (regardless of the condition 4A% + 27B? 2 0). There are

pF -1

p—1
such v elements. For each of these, the polynomial c4 g — <y defines a plane affine curve, by the
claimed irreducibility. Its degree is bounded by d = 3(p — 1)/2, hence its (geometric) genus is

at most (d — 1)(d — 2)/2, and the number of points at infinity is at most d. Therefore, the set
S, C S of couples satisfying c4 g = 7 is subject to

#8!, — (" + 1) < (d = 1)(d — 2)/pF + d < IpH/>+?

by the Hasse—~Weil bound. Note that c4 g = y defines an affine, possibly singular curve, so some
caution is needed when applying the Hasse—Weil bound (see [13, Theorem 5.4.1] for details).
Summing up, and using (p* —1)/(p — 1) < 3p*~! (since p > 5),

#5; =

P -1 < 45 357041
p—1 |16 ’

Because #(S] \ S;) < p* and 5pF~1 < p* < LpB/PFFL we obtain

2k k 2k k
Pt —p pt =11 p¥—1 45 1 5 1\ (gp/2)41
St — ———| < |#S5: — S|\lmt+ta+57 = ;
#5 1 ’#t p—l‘+p—1 Cﬁ+11 1'55)7
which completes the proof. ]

LEMMA 8. Let p > 5 be a prime number and let ca, g € F,[A, B] be the coefficient of 2Pt
in
(z° + Az + B)P~V/2 ¢ T, [A, B][z].

Then ca p is homogeneous of (2, 3)-weighted degree (p — 1)/2, non-zero and absolutely square-
free. As a consequence, for any vy € F\, the polynomial

CAB — 7 E]Fp[A,B]

is irreducible.

Proof. One verifies that

lp-1)/4) /p—1 i ' ‘
CAB = Z ( 2 ) (32' P 1) Ad=(e-1)/2glp=1)/2=2i (18)

i=[(p—1)/6] \ *

from which it immediately follows that c4 p is non-zero and homogeneous of degree (p — 1)/2
if we equip A and B with weights 2 and 3, respectively. It is easy to verify that A and B appear
as a factor at most once.

Let ¢y p be obtained from ca p by deleting the factors A and B when possible. Define ¢4
and ep to be 1 if a factor A and B was deleted, respectively, and 0 otherwise. Then c;" g is
still homogeneous, of degree (p —1)/2 — 2e4 — 3ep. After dividing by a suitable power of A
and considering the resulting polynomial in the single variable B%/A3, one verifies that 0247 B
splits (over F,) as

¢(B? — a1 A?)(B? — apA3) ... (B? — a,A?), (19)

with r = 3((p—1)/2 — 24 — 3ep) and all c, a; # 0. Each of these factors corresponds to a

Ji 70,1728 for which the elliptic curve over F, with j-invariant j; is supersingular, and
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conversely, all supersingular j-invariants different from 0 and 1728 must be represented this
way. Now the number of supersingular j-invariants different from 0 and 1728 is precisely given
by r (see the proof of [32, Theorem V.4.1(c)]). Therefore, all factors in (19) must be different,
and in particular c4, g must be square-free.

Now let v € fF; and suppose we had a non-trivial factorization

cap—7=F1+X1)(F2 + Xa),

where F} and F» are the components of highest (weighted) degree of the respective factors.
Then it follows that F1Fy = c4, g, so F} and F, cannot have a common factor. It also follows
that

X1Fo+ XoF1 + X1 Xo+v=0. (20)

Let X{ and X) be the components of highest degree of X; and Xs, respectively. Suppose
deg X F5 > deg Xo Fy. Then X F; is zero, because it cannot be cancelled in (20). But then X| =
X1 = 0 and we run into a contradiction. By symmetry, we conclude that deg X; Fo = deg Xo F7.
But then X F» + X5 Fy = 0. So all factors of Fy must divide X/ F», which is impossible unless
X| =0, and we again run into a contradiction. O

TABLE 5. (-torsion frequencies and ¢, values for C(F,) using random elliptic curves
C:y? = f(x) with f € HE.

P =2 £=3 L=5 =7 cp
1012 + 39 Observed 0.6654 0.3749 0.2507 0.1664 0.5492
Predicted 0.6667 0.3750 0.2500 0.1667 0.5564
10'2 + 61 Observed 0.6662 0.5003 0.2083 0.1664 0.4686
Predicted 0.6667 0.5000 0.2083 0.1667 0.4646
102 + 63 Observed 0.6672 0.3756 0.2503 0.1460 0.5600
Predicted 0.6667 0.3750 0.2500 0.1458 0.5642
1012 4+ 91 Observed 0.6660 0.4989 0.2089 0.1454 0.4818
Predicted 0.6667 0.5000 0.2083 0.1458 0.4794
[1012,10'2 4 4 x 106] Observed 0.6666 0.4374 0.2396 0.1631 0.5044
Predicted 0.6667 0.4375 0.2396 0.1632 0.5052

Sample size is 10® (or 102 for p ranging over the interval [10'2,10'2 + 4 x 109]).

TABLE 6. (-torsion frequencies and ¢, values for Jac(C)(F,) using random genus 2 curves
C:y* = f(x) with f € HE".

p =2 £=3 t=5 =7 p
108 +3 Observed 0.7991 0.3616 0.2395 0.1628 0.3426
Predicted 0.8000 0.3609 0.2396 0.1632 0.3444
108 + 37 Observed 0.8000 0.4376 0.2393 0.1626 0.3056
Predicted 0.8000 0.4375 0.2396 0.1632 0.3037
106 + 81 Observed 0.8001 0.3619 0.2066 0.1632 0.3571
Predicted 0.8000 0.3609 0.2067 0.1632 0.3593
106 + 121 Observed 0.8003 0.4376 0.2059 0.1637 0.3197
Predicted 0.8000 0.4375 0.2067 0.1632 0.3189
[10%,2 x 109] Observed 0.8000 0.3992 0.2314 0.1604 0.3285
Predicted 0.8000 0.3992 0.2314 0.1602 0.3290

Sample size is 108 (or 102 for p ranging over the interval [10,2 x 109]).
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We conclude this section with a derivation of Conjectures 6 and 7. To apply our heuristics,
we need to generalize the material from Section 6. In analogy with the notation employed
there, for any prime power ¢, any prime number ¢ and any integer g > 1, let P(q,¢, g) be the
probability that the Jacobian of the hyperelliptic curve y? + h(z)y = f(x), with (f,h) chosen
from Hy41,2g+2 uniformly at random, has an F,-rational ¢(-torsion point. Let (g, ¢, g) be the
proportion of matrices of GSpéZ) (Fy) having 1 as an eigenvalue if £ 1 ¢, and the proportion of
matrices of GL4(Fy) if ¢ | ¢. Then according to Principles 2 and 3, if g € {1,2}, we have that

P(q,4,9) — Q(q, ¢, g) as ¢ — oo. Recall from Theorem 6 that one has

T

g
=S rJJa-enTt dtefq-1,
Qg.t9) =1 "5 7

—ZH(l—zﬂ')—l if0tg—1

r=1j=1

(21)

TABLE 7. ¢, values for the number of points on random genus 2 curves y*> = f(z) with f € H2.

109 +7 10° +9 107 + 21 107 + 33
Observed 1.0162 1.0738 1.0892 1.0945
Predicted 1.0194 1.0790 1.0865 1.0898

Sample size is 106, The deviations are larger here due to the shorter intervals (of width approximately

8 x 109/2 versus 8 x 10% and 4 x 10° in Tables 5 and 6).

TABLE 8. Trace distributions modulo ¢ for random genus 2 curves y*> = f(x) with f € HE.

P ¢ t=0 t=1 t=2 t=3 t=4
106 + 3 2 Observed 0.4658 0.5342
Predicted 0.4667 0.5333
3 Observed 0.3598 0.3205 0.3197
Predicted 0.3594 0.3203 0.3203
5 Observed 0.2072 0.1988 0.1978 0.1981 0.1981
Predicted 0.2067 0.1982 0.1985 0.1985 0.1982
106 + 37 2 Observed 0.4653 0.5346
Predicted 0.4667 0.5333
3 Observed 0.3628 0.3185 0.3186
Predicted 0.3625 0.3188 0.3188
5 Observed 0.2070 0.1982 0.1981 0.1983 0.1984
Predicted 0.2067 0.1985 0.1982 0.1982 0.1985
10 + 39 2 Observed 0.4667 0.5332
Predicted 0.4667 0.5333
3 Observed 0.3593 0.3206 0.3202
Predicted 0.3594 0.3203 0.3203
5 Observed 0.2068 0.1978 0.1983 0.1989 0.1982
Predicted 0.2066 0.1985 0.1983 0.1983 0.1985
[106,2 x 106] 2 Observed 0.4669 0.5331
Predicted 0.4667 0.5333
3 Observed 0.3609 0.3194 0.3197
Predicted 0.3625 0.3203 0.3203
5 Observed 0.2068 0.1982 0.1984 0.1981 0.1985
Predicted 0.2067 0.1984 0.1984 0.1985 0.1984

Sample size is 108 (or 102 for p ranging over the interval [10%,2 x 109]).
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if £1¢. However, the same formula applies for £ | ¢, because in case £{ ¢ — 1, the proportion
of matrices of GSpgé) (F¢) having 1 as an eigenvalue equals the corresponding proportion for
GLg4(F¢) anyway, due to Lemma 3. In other words, one can blindly adapt Theorem 6 to this
more general setting. Therefore, we have the following.

Heuristic derivation of Conjectures 6 and 7. This is a copy of the heuristic derivations of
Conjectures 1 and 2.

11. Experimental evidence

Tables 5-11 present experimental data in support of Conjectures 1-5. Table 5 lists ¢-torsion
frequency data and ¢, values for elliptic curves, which is relevant to Conjecture 1 and the
corresponding Lemma 1. Table 6 lists similar data for Jacobians of genus 2 curves (see
Conjectures 2 and 3, and Lemma 2). Table 7 lists ¢, values for the number of points on the
curves themselves, related to Conjecture 4, while Table 8 gives experimental trace distributions
of genus 2 curves modulo £ (see Table 3). Tables 9 and 10 relate to Theorem 1 and Conjecture 5,
concerning the rank of the Jacobians of curves of genus 1 and 2, respectively. Finally, Table 11
supports Conjecture 6 on the case of extension fields in genus 1.

TABLE 9. Rank frequencies for C(F,) for random elliptic curves C : y* = f(z) with f € H5".

p 14 Rank 0 Rank 1 Rank 2
102 + 39 2 Observed 0.3346 0.4993 0.1661
Predicted 0.3333 0.5000 0.1667
3 Observed 0.6251 0.3334 0.0415
Predicted 0.6250 0.3333 0.0417
5 Observed 0.7492 0.2507
Predicted 0.7500 0.2500
o Observed 0.7988 0.2013
Predicted 0.7980 0.2020
1012 4+ 61 2 Observed 0.3338 0.4996 0.1666
Predicted 0.3333 0.5000 0.1667
3 Observed 0.4997 0.5003
Predicted 0.5000 0.5000
5 Observed 0.7917 0.1999 0084
Predicted 0.7917 0.2000 0083
0o Observed 0.8263 0.1737
Predicted 0.8264 0.1736
1012 4 63 2 Observed 0.3328 0.4995 0.1677
Predicted 0.3333 0.5000 0.1667
3 Observed 0.6244 0.3339 0.0416
Predicted 0.6250 0.3333 0.0417
5 Observed 0.7497 0.2503
Predicted 0.7500 0.2500
oo Observed 0.7953 0.2047
Predicted 0.7962 0.2038
[10'2,2 x 10'% + 4 x 109] 2 Observed 0.3334 0.4999 0.1666
Predicted 0.3333 0.5000 0.1667
3 Observed 0.5626 0.4166 0.0208
Predicted 0.5635 0.4167 0.0208
5 Observed 0.7604 0.2375 0.0021
Predicted 0.7604 0.2375 0.0021
oo Observed 0.8138 0.1862
Predicted 0.8138 0.1862

Sample size is 10° (or 10? for p ranging over the interval [10*2,2 x 10*2]). Rows with £ = oo indicate maximum
¢-rank over all primes £.
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The data in Tables 5-10 were obtained using the SMALLJAC library [33], based on the
algorithms described in [21]. Table 11 was obtained using the intrinsic MAGMA [7] point
counting function. We conducted our tests by sampling random curves C' over finite fields F,,.
We collected data both using fixed primes p, and for all primes in a given interval. For genus 1,

TABLE 10. Rank frequencies for Jac(C)(F,) for random genus 2 curves
C:y* = f(x) with f € HE.

P 0 Rank 0 Rank 1 Rank 2 Rank 3 Rank 4
10 4 3 2 Observed 0.200113 0.416313 0.291528 0.083775 0.008271
Predicted 0.200000 0.416667 0.291667 0.083333 0.008333
3 Observed 0.637964 0.320212 0.040254 0.001548 0.000022
Predicted 0.639063 0.319444 0.039931 0.001543 0.000019
5 Observed 0.761095 0.236804 0.002101
Predicted 0.760417 0.237500 0.002083
) Observed 0.589030 0.317489 0.085188 0.008293
Predicted 0.589471 0.317443 0.084733 0.008352
108 4 81 2 Observed 0.200794 0.416446 0.290857 0.083593 0.008310
Predicted 0.200000 0.416667 0.291667 0.083333 0.008333
3 Observed 0.637636 0.320698 0.040107 0.001533 0.000026
Predicted 0.639063 0.319444 0.039931 0.001543 0.000019
5 Observed 0.793657 0.198090 0.008186 0.000067 0.000000
Predicted 0.793336 0.198333 0.008264 0.000067 0.000000
oo Observed 0.586416 0.320192 0.085056 0.008336
Predicted 0.585781 0.321073 0.084794 0.008353
10° 4 133 2 Observed 0.199300 0.416997 0.292156 0.083233 0.008314
Predicted 0.200000 0.416667 0.291667 0.083333 0.008333
3 Observed 0.562514 0.416732 0.020754
Predicted 0.562500 0.416667 0.020833
5 Observed 0.760019 0.237919 0.002062
Predicted 0.760417 0.237500 0.002083
oo Observed 0.600296 0.308148 0.083242 0.008314
Predicted 0.600635 0.307690 0.083341 0.008333
[1067 2 X 106] 2 Observed 0.200039 0.416528 0.291761 0.083320 0.008353
Predicted 0.200000 0.416667 0.291667 0.083333 0.008333
3 Observed 0.600830 0.368047 0.030337 0.000777 0.000009
Predicted 0.600781 0.368056 0.030382 0.000772 0.000010
5 Observed 0.768609 0.227739 0.003637 0.000016 0.000000
Predicted 0.768647 0.227708 0.003629 0.000017 0.000000
00 Observed 0.594471 0.313125 0.084043 0.008362
Predicted 0.594567 0.313040 0.084050 0.008343

Sample size is 10° (or 10? p ranging over the interval [10%,2 x 10°]). Rows with £ = co indicate maximum #-rank
over all primes £.

TABLE 11. {-torsion frequencies and cy values for C(FF,.) using random elliptic curves
C:y? = f(x) with f € HZ.

p* =2 =3 =5 =7 =11 ch
326 Observed 0.6669 0.4999 0.2501 0.1666 0.1000 0.4387
Predicted 0.6667 0.5000 0.2500 0.1667 0.1000 0.4401
518 Observed 0.6667 0.3748 0.2501 0.1458 0.1000 0.5659
Predicted 0.6667 0.3750 0.2500 0.1458 0.1000 0.5662
715 Observed 0.6667 0.3751 0.2499 0.1667 0.1001 0.5541
Predicted 0.6667 0.3750 0.2500 0.1667 0.1000 0.5523
1112 Observed 0.6665 0.3749 0.2083 0.1457 0.1002 0.6020
Predicted 0.6667 0.3750 0.2083 0.1458 0.1000 0.6015

Sample size is 107.
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we used p &~ 10'? and for genus 2 we used p ~ 10° (except for Table 7) so that in both cases
#Jac(C)(F,) ~ 102, Each test with a fixed prime used a sample size of approximately 106,
while our interval tests used 10% curves for each of at least 10* primes. In order to maximize
the performance of the algorithms used to collect the data, we restricted our tests to curves
of the form y? = f(x), where f is a monic polynomial of degree 2g + 1. Therefore, in genus 2,
our experimental data should be compared with the HZ" analogues of the conjectures that deal
with Hg (which according to Theorem 10 only affects the contribution of £ = 2, the necessary
adaptations to which can be made using Table 2).
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