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Why L-functions?

Many of the most important questions in number theory involve L-functions:

• Riemann hypothesis

• Artin conjecture

• Birch and Swinnerton-Dyer conjecture

• Tate conjecture

• Sato–Tate conjecture

• Lang–Trotter conjecture

• Murmurations

• Modularity and the Langlands program



View on the LMFDB

https://www.lmfdb.org/universe


Elliptic curves and their L-functions

Theorem (Eichler, Shimura, Langlands–Tunnell, Frey, Serre, Ribet, Mazur, Wiles,
Taylor–Wiles, Breuil–Conrad–Diamond–Taylor)
For each positive integer N, the set of L-functions L(E , s) of elliptic curves E/Q of
conductor N is equal to the set of L-functions L(f , s) of newforms f ∈ Snew

2 (Γ0(N))
of weight 2 and level N with rational q-expansions.



Antwerp IV tables (1972)

Elliptic curves computed by Swinnerton-Dyer Modular forms computed by Tingley



A more modern version of the same thing



Modularity for abelian varieties
An abelian variety is a smooth projective variety that is also an algebraic group
(projective implies abelian). Elliptic curves are abelian varieties of dimension one.

Abelian varieties A of dimension g over a field k form a category whose morphisms are
isogenies (surjective morphisms with finite kernel that preserve the group structure).

For g ≥ 1 and k a number field, each A/k of dimension g has an L-function

L(A, s) :=
∏
p

Lp(|p|−s)−1 =
∑
n≥1

ann−s

with L-polynomials Lp ∈ Z[T ] and Dirichlet coefficients an ∈ Z. For primes p of good
reduction, Lp(T ) is the numerator of the zeta function of Ā/Fp of degree 2g .
For A1/k and A2/k we have L(A1, s) = L(A2, s) if and only if A1 ∼ A2 (Faltings-Tate).

Conjecture
Every abelian variety over a number field is modular. For k = Q this means there is an
isobaric automorphic representation π of GL2g(AQ) for which L(A, s) = L(s − 1/2, π).



Enumerating elliptic curves by conductor
To enumerate abelian varieties of dimension g = 1 over Q one may proceed as follows:

1. Prove the modularity conjecture for g = 1 and k = Q.
2. Enumerate rational modular forms f ∈ Snew

2 (Γ0(N)) for N = 1, 2, 3, . . .

3. Use Eichler-Shimura to get an isogeny class representative Ef for each f .
4. Fill out isogeny classes by finding all the elliptic curves E/Q isogenous to Ef .

For N ≤ 500 000 this yields 3 064 705 elliptic curves and 2 164 260 L-functions.

Each of these steps is substantially more difficult for g > 1, even for g = 2.

There has been major recent progress on step 1 [Boxer-Calegari-Gee-Pilloni 2025],
and on step 4 [van Bommel-Chidambaram-Costa-Kieffer 2023].

But step 2 is currently impractical, and even if this changes, step 3 is impossible,
so we cannot apply this strategy for g > 1.

https://arxiv.org/abs/2502.20645
https://arxiv.org/abs/2301.10118


Challenges in dimension two
We have nothing close to a g = 2 version of the 1972 Antwerp tables. Current tables
of rational weight-2 paramodular forms are provably complete only up to level 251
(Poor-Yuen 2025). This includes only one generic case (level 249), and we have yet to
prove the existence of an abelian surface with the same L-function. Current tables of
abelian surfaces over Q include only Jacobians and omit the very first case (level 121).

• Enumerating weight-2 paramodular forms is very difficult (no dimension formulas).
Computing the L-function of a paramodular form is also very difficult.

• There is no analog of the Eichler-Shimura construction for paramodular forms
(the converse of the modularity conjecture is false for g = 2 and k = Q).

• Not all abelian surfaces over Q are Jacobians of genus 2 curves over Q
(one can generically represent an abelian surface as a projective variety in P15

defined by 72 quadratic forms, but this is not a very pleasant thing to do).
• No algorithm is known to enumerate genus 2 curves over Q of a given conductor.

Even computing the conductor of a given genus 2 curve can be very difficult.



Abelian surfaces over Q
Abelian varieties of dimension g = 2 are abelian surfaces. Examples over Q include:

1. A = E1 × E2 is a product of elliptic curves over Q: L(A, s) = L(E1, s)L(E2, s).
2. A = Af is the Eichler–Shimura image of a newform f ∈ Snew

2 (Γ0(N)) with
quadratic Hecke field: L(A, s) = L(s − 1/2, f )L(s − 1/2, f σ).

3. A = Res E is the Weil restriction of E/K with [K : Q] = 2: L(A, s) = L(E , s).
4. A = Jac C is the Jacobian of a genus 2 curve C/Q: L(A, s) = L(C , s).
5. A = Prym(C1 → C2) is a Prym variety: L(A, s) = L(C1, s)/L(C2, s).

These options are not mutually exclusive (especially at the level of isogeny classes).

A admits a principal polarization (A ≃ A∨) in cases 1,3,4, and usually in case 2, but
usually not in case 5 (which is necessary; not all A/Q admit a principal polarization).

Modularity is known in cases 1 and 2, in case 3 when K is totally real (and for some
imaginary K ), and for a positive proportion of case 4 (when C are ordered by height).



Automorphic forms associated to abelian surfaces over Q (BSSVY)
Type Conductor Curve Equation Motive Modular form

A[C1 ](s) 277 = 2771 y2 +(x3 +x2 +x +1)y = −x2 −x typical surface paramodular form

B[C1 ]s 529 = 232 y2 +(x3 +x +1)y = −x5 surface with RM by Q(
√

5) over Q CMF 23.2.1.a
B[C1 ]ns 294 = 213172 y2 +(x3 +1)y = x4 +x2 product of ECs 14a4 and 21a4 over Q CMFs 14.2.1.a and 21.2.1.a
B[C2 ]s 10368 = 2734 y2 +x2y = 3x5 −4x4 +6x3 −3x2 +1 surface with RM by Q(

√
2) over Q(

√
2) HMF 162.1-a over Q(

√
2)

B[C2 ]ngs 1088 = 26171 y2 +(x3 +x2 +x +1)y = x4 +x3 +2x2 +x +1 Weil restriction of 17.1-a1 over Q(
√

2) HMF 17.1-a over Q(
√

2)
C[C2 ](ns) 448 = 2671 y2 +(x3 +x)y = x4 −7 product of PCM EC 32a3 and EC 14a6 over Q CMFs 32.2.1.a and 14.2.1.a

D[C4 ](s) 3125 = 55 y2 +y = x5 surface with CM by Q(ζ5) over Q(ζ5) CM HMF 125.1-a over Q(
√

5)

D[D2 ](ns) 8192 = 213 y2 = x6 −9x4 +16x2 −8 product of PCM ECs 32a3 and 256d1 over Q CMFs 32.2.1.a and 256.2.1.d

E[C1 ](ns) 196 = 2272 y2 +(x2 +x)y = x6 +3x5 +6x4 +7x3 +6x2 +3x +1 square of EC 14a1 over Q CMF 14.2.1.a

E[C2, C](ngs) 576 = 2632 y2 +(x3 +x2 +x +1)y = −x3 −x square of EC 9.1-a3 over Q(
√

2) CMF 24.2.13.a

E[C3 ](ngs) 324 = 2234 y2 +(x3 +x +1)y = x5 +2x4 +2x3 +x2 square of EC 8.1-a1 over 3.3.81.1 CMF 18.2.13.a

E[C4 ](ngs) 256 = 28 y2 +y = 2x5 −3x4 +x3 +x2 −x square of EC 1.1-a5 over 4.4.2048.1 CMF 16.2.5.a

E[C6 ](ngs) 169 = 132 y2 +(x3 +x +1)y = x5 +x4 square of EC 1.1-a3 over 6.6.371293.1 CMF 13.2.4.a

E[C2, R × R]s 455625 = 3654 y2 +(x3 +x2 +x +1)y = x5 − 3x4 −2x −1 surface with QM (D = 6) over 2.0.3.1 BMF over 2.0.3.1 of level 50625
E[C2, R × R]ngs 3969 = 3472 y2 +(x2 +x +1)y = −3x5 +5x4 −4x3 +x Weil restriction of 441.2-a over 2.0.3.1 BMF 2.0.3.1-441.2-a

E[C2, R × R]ns 675 = 3352 y2 = −x6 −14x5 −44x4 +28x3 −44x2 −14x −1 product of ECs 15a2 and 45a2 over Q CMFs 15.2.1.a and 45.2.1.a
E[D2 ]s 20736 = 2834 y2 = −27x6 −54x5 −27x4 +18x3 +18x2 −2 surface with QM (D = 6) over 4.0.576.2 HMF 324.1-b over Q(

√
2)

E[D3 ]s 34992 = 2437 y2 = −2x6 −6x5 +10x3 +9x2 −18x +6 surface with QM (D = 6) over 6.0.2834352.2 BMF over 2.0.3.1 of level 3888
E[D4 ]s 20736 = 2834 y2 +y = 6x5 +9x4 −x3 −3x2 surface with QM (D = 6) over 8.0.339738624.10 BMF over 2.0.3.1 of level 2304
E[D6 ]s 8100 = 223452 y2 +x3y = x6 +3x5 −42x4 +43x3 +21x2 −60x −28 surface with QM (D = 6) over degree 12 field BMF over 2.0.3.1 of level 900
E[D2 ]ngs 6400 = 2852 y2 = 2x5 +5x4 +8x3 +7x2 +6x +2 square of EC 256.1-a1 over Q(

√
5) HMF 2.2.5.1-256.1-a

E[D3 ]ngs 2187 = 37 y2 +(x3 +1)y = −1 square of EC over 6.0.177147.2 BMF over 2.0.3.1 of level 243
E[D4 ]ngs 3600 = 243252 y2 +x2y = x5 −3x4 +11x2 −16x square of EC over 4.0.13500.2 BMF over Q(i) of level 225
E[D6 ]ngs 3600 = 243252 y2 +x3y = 14x3 −20 square of EC over 6.0.7200000.1 BMF over 2.0.3.1 of level 400
F[D2,C2,H]ngs 576 = 2632 y2 +x3y = 5x3 −2 square of PCM EC 1.1-a2 over Q(

√
6) CM HMF 1.1-a over Q(

√
6)

F[C2,C1,M2(R)]ns 729 = 36 y2 +y = −48x6 +15x3 −1 square of PCM EC 27.a4 over Q CM CMF 27.2.1.a
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Provisional result (proof in progress)

Theorem (Booker-S)
Assuming modularity of abelian surfaces and GRH for Rankin–Selberg L-functions,
there are (at most) 1059 (and at least 1057) isogeny classes of abelian surfaces over Q
of conductor ≤ 1500. Among these

• 818 arise from products of elliptic curves over Q;

• 28 arise from weight-2 newforms with quadratic Hecke field;

• 7 arise from the Weil restriction of an elliptic curve over a quadratic field;

• (at most) 206 (and at least 204) arise from generic abelian surfaces,
of which at least 193 include a Jacobian.

(Of the 13 generic abelian surfaces not known to arise as Jacobians, 11 arise as Prym
varieties associated to a genus 3 cover of a genus 1 curve. We are currently searching
for the other 2, which have conductors 969 and 1274. Finding them would allow us to
remove everything in parentheses on this slide.)



Some non-provisional results
Theorem (Booker-S)
There are exactly two isogeny classes of modular abelian surfaces over Q with good
reduction away from 7.
The set S = {7} is the unique nonempty set of primes for which we currently know all
isogeny classes of modular abelian surfaces over Q with good reduction away from S.

Theorem (Booker-S)
There are exactly three isogeny classes of modular abelian surfaces over Q with
conductor dividing 211.

(Table 6.6 in Robin Visser’s PhD thesis)

https://warwick.ac.uk/fac/sci/maths/people/staff/visser/thesis.pdf


An axiomatic approach to L-functions of abelian varieties over Q
Fix a positive integer g . We shall consider arithmetic L-functions of degree 2g ,
motivic weight 1, field of coefficients Q, and an Euler product

L(s) :=
∑

n
ann−s =

∏
p

Lp(p−s)−1,

with an ∈ Z and Lp ∈ Z[T ] of degree ≤ 2g . We further assume that
Λ(s) := ΓC(s)gL(s) is holomorphic on C and satisfies the functional equation

Λ(s) = εN1−sΛ(2 − s)

with root number ε = ±1 and conductor N (with deg Lp = 2g iff p ∤ N),
and that |an| ≤ d2g(n)

√
n, where dr (n) =

∑
n1···nr =n 1.

Under the modularity conjecture, every abelian variety A/Q of dimension g has such
an L-function (whose root number and conductor can be defined arithmetically).
Conversely, if we assume L(s) = L(A, s) for some A/Q we can impose additional
constraints on Lp(s) for a particular choice of local root numbers εp for p|N.



Conductor bounds for abelian varieties over Q

The formula of [Brumer–Kramer 94] gives explicit bounds on the p-adic valuation of
the conductor N of an abelian variety A/Q of dimension g :

vp(N) ≤ 2g + pd + (p − 1)λp(d),

where d = ⌊ 2g
p−1⌋ and λp(d) =

∑
idipi , with d =

∑
dipi and 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7
1 8 5 2 2 2
2 20 10 9 4 4
3 28 21 11 13 6

For g ≤ 2 these bounds are known to be tight (see www.lmfdb.org for examples).

http://www.numdam.org/item/CM_1994__92_2_227_0/
www.lmfdb.org


A finite problem

Let S(g , N, ε) denote the set of L-functions L(s) that satisfy our axioms for a
particular choice of g , N ∈ Z>0 and ε = ±1.

The set S(g , N, ε) is conjectural finite. Moreover there is an effectively computable
n0 = O(

√
N) for which the coefficients a1, . . . , an0 uniquely determine each

L ∈ S(g , N, ε) (with n0 = O(log2 N) under GRH).

We seek an algorithm that takes inputs g , N, ε, determines a suitable n0, and then
outputs a list of distinct tuples (a1, . . . , an0), one for each L ∈ S(g , N, ε).
See Booker and Farmer–Koutsoliotas–Lemurell for prior work in this direction.

Our plan: Compute S(g , N, ε) using linear algebra (and lattice reduction),
then search for A/Q with L(A, s) ∈ S(g , N, ε).

Our plan depends crucially on being able to compute S(g , N, ε) explicitly.
This not only tells us when to stop searching, knowing a1, . . . , an0 helps us search.

https://people.maths.bris.ac.uk/~maarb/public/papers/modularity.pdf
https://doi.org/10.1016/j.jnt.2018.01.019


A brief digression

Conjecture (Shafarevich, proved by Faltings)
Let K be a number field and let S be a finite set of primes of K. The set of abelian
varieties of dimension g over K with good reduction away from S is finite.

Conjecture (Mordell, proved by Faltings)
Let C be a nice curve of genus g ≥ 2 over a number field K. The set C(K ) is finite.

Faltings’ proofs are ineffective: they do not provide a way to enumerate (or even
bound the size of) these sets and no such methods are currently known.

Alpöge and Lawrence recently proved under the Hodge, Tate, and Fontaine–Mazur
conjectures, the existence of (hopelessly impractical) algorithms to do this.

Our results imply that under modularity and an integral converse theorem for GL4
(with character twists), similar algorithms exist. They are also hopelessly impractical
(but arguably less hopelessly impractical).

https://arxiv.org/pdf/2408.11653


The approximate functional equation
Fix g , N, ε. For each nonnegative integer k we define Sk(x) :=

∑
n fk(n/x)an/n, where

fk(x) := 1
2πi

∫ c+i∞

c−i∞
(s − 1)kΓC(s)gx1−s ds.

The functional equation then implies the identity

Sk(x) = ε(−1)kSk(N/x),

valid for all x > 0; this is an approximate functional equation. If we choose k so that
(−1)k = −ε and put x =

√
N we obtain a nontrivial linear constraint on the an:∑

n

an
n fk(n/

√
N) = 0. (1)

The O(
√

n) bounds on an and rapid decay of fk(x) allow us to compute an interval
Ik,m containing the truncated sum in (1) for n ≤ m that does not depend on the an.



A system of linear constraints
For each k ≥ 0 of the correct parity (meaning (−1)k = −ε), we have linear constraints∑

n≤m
fk

(
n/

√
N

) an
n ∈ Ik,m.

We restrict to k = O(N1/4) and orthogonalize the fk with respect to the inner product
⟨u, v⟩ =

∫ ∞
0

u(x)v(x)
x dx . We also have the constraints |an| ≤ d2g(n)

√
n for n ≥ 1.

We now assume the L ∈ S(g , N, ε) are automorphic, and obtain additional constraints
by twisting L(s) by a Dirichlet character χq : Z → C.

This generally increases the conductor and widens the corresponding interval Iχ,k,m,
but for χ of small conductor q and small k we obtain useful constraints

∑
n≤m

ℑ
(

χq(n)/
√

(−1)kεA×χq

)
fk

(
n/

√
NA×χq

)an
n ∈ Iq,k,m.

By fixing local root numbers at primes dividing N we can sharpen these constraints.



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64

We want to compute bounds on a2 ∈ Z satisfying the constraints below.
We know a priori (via the Weil bounds) that a2 ∈ [−4, 4].

q k a2 a3 a4 a5 a6 a7 a8 · · · a64 Iq,k,64

1 1 1 0.446 0.216 0.112 0.0613 0.0349 0.0206 · · · 3.10 × 10−9 −2.42 ± 9.00 × 10−6

1 3 -0.226 0.853 1 0.862 0.674 0.506 0.373 · · · 8.56 × 10−7 +2.85 ± 2.76 × 10−3

1 5 0.854 -0.864 -1 -0.572 -0.112 0.223 0.421 · · · 6.78 × 10−5 −1.75 ± 0.212
1 7 -1 0.153 0.570 0.366 0.0354 0.202 0.308 · · · 8.59 × 10−4 −1.09 ± 3.70
3 1 -0.891 0 1 -0.866 0 0.618 -0.520 · · · 9.62 × 10−4 0.748 ± 5.88

• The solution dual to maximizing a2 is (0.969, −0.0859, 0.0124, −0.00332, 0.0027).
We don’t care if this is slightly incorrect (e.g. due to precision loss or bugs).

• Computing this linear combination of constraints using interval arithmetic and
worst case bounds on a3, a4, . . . , a64 we can prove a2 ≤ −0.929.

• Rounding to integers, we deduce a2 ∈ [−4, −1], eliminating 5 of 9 possibilities.
Minimizing a2 may eliminate more possibilities (but not in this example).



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64
We now suppose a2 = −4.
This forces a4 = 8, a8 = −8, . . . , a64 = −64 which we move to the RHS.
For odd n we can express a2n = −4an in terms of an and remove it from the system.

q k a3 a4 a5 a6 a7 a8 a9 · · · a63 Iq,k,64

1 1 1 0 0.366 0 0.131 0 0.0499 · · · 1.67 × 10−8 0.0853 ± 3.99 × 10−5

1 3 -1 0 0.146 0 0.279 0 0.198 · · · 1.00 × 10−6 −2.91 ± 2.71 × 10−3

1 5 1 0 -0.590 0 -0.353 0 -0.0653 · · · 2.36 × 10−5 4.76 ± 7.38 × 10−2

1 7 -0.675 0 1 0 0.111 0 -0.284 · · · 3.57 × 10−4 −4.90 ± 1.35
3 1 0 0 -1 0 0.540 0 0 · · · 0 −4.45 ± 1.90

• The dual solutions for minimizing and maximizing a3 are
(0.484, −0.352, 0.131, −0.0486, 0) and (0.595, −0.27, 0.105, −0.0434, 0.0732).

• This allows us to prove a3 ∈ [0.264, 2.41] (given a2 = −4).

• We deduce that [1, −4, 1] and [1, −4, 2] are the only possible extensions of [1, −4]
(for our fixed choice of conductor and local root numbers).



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64

We now suppose a2 = −3 (this constrains but does not fix a4, a8, . . . , a64).
As above, for n odd we have a2n = −3an and remove a2n from the system.

q k a3 a4 a5 a6 a7 a8 a9 · · · a64 Iq,k,64

1 1 1 0.827 0.340 0 0.118 0.0786 0.0441 · · · 1.18 × 10−8 2.23 ± 2.58 × 10−5

1 3 -1 0.855 0.226 0 0.283 0.319 0.187 · · · 7.32 × 10−7 1.86 ± 1.77 × 10−3

1 5 -0.243 -0.459 -1 0 -0.402 0.193 -0.0235 · · · 2.66 × 10−5 0.373 ± 7.30 × 10−2

1 7 0.042 0.506 1 0 -0.367 -0.274 -0.788 · · · 7.64 × 10−4 −3.64 ± 2.47
3 1 0 0.506 -1 0 0.610 -0.263 0 · · · 4.86 × 10−4 −0.973 ± 2.22

• Using the dual solutions we are able to prove a3 ∈ [−1.55, 1.51] (given a2 = −3).

• We find that [1, −3, −1], [1, −3, 0], [1, −3, 1] are the possible extensions of [1, −3].



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64

We now suppose a2 = −2.

q k a3 a4 a5 a6 a7 a8 a9 · · · a64 Iq,k,64

1 1 1 0.670 0.300 0 0.0995 0.0637 0.0367 · · · 9.60 × 10−9 −1.29 ± 1.39 × 10−5

1 3 -0.495 1 0.464 0 0.390 0.373 0.236 · · · 8.56 × 10−7 2.40 ± 1.38 × 10−3

1 5 -0.390 -0.609 -1 0 -0.310 0.256 0.0834 · · · 3.53 × 10−5 −0.0259 ± 6.45 × 10−2

1 7 0.0947 0.653 1 0 -0.393 -0.353 -0.797 · · · 9.85 × 10−4 −3.54 ± 2.12
3 1 0 0.622 -1 0 0.629 -0.324 0 · · · 5.98 × 10−4 −0.643 ± 1.82

• We find that [1, −2, −2], [1, −2, −1] are the possible extensions of [1, −2].



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64

We now suppose a2 = −1.

q k a3 a4 a5 a6 a7 a8 a9 · · · a64 Iq,k,64

1 1 1 0.563 0.272 0 0.0873 0.0535 0.0316 · · · 8.07 × 10−9 −3.69 ± 1.17 × 10−5

1 3 0.179 1 0.663 0 0.448 0.373 0.255 · · · 8.56 × 10−7 2.63 ± 1.38 × 10−3

1 5 -0.679 -0.903 -1 0 -0.130 0.380 0.294 · · · 5.24 × 10−5 −0.810 ± 9.57 × 10−2

1 7 0.191 0.920 1 0 -0.440 -0.498 -0.813 · · · 1.39 × 10−3 −3.38 ± 2.99
3 1 0 0.809 -1 0 0.659 -0.421 0 · · · 7.78 × 10−4 −0.115 ± 2.37

• Using the dual solutions we prove a3 ∈ [−7.14, −2.44] (given a2 = −1).

• v3(N) = 1 and ε3 = −1 force a3 ≥ −2, so [1, −1] cannot be extended.



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64
At this point we have determined that if L(A, s) =

∑
ann−s is the L-function of a

modular abelian surface of conductor 249 with ε3 = ε83 = −1 we must have

[a1, a2, a3] ∈
{

[1, −4, 1], [1, −4, 2], [1, −3, −1], [1, −3, 0], [1, −3, 1], [1, −2, −2], [1, −2, −1]
}

.

Continuing in this fashion we find

• 11 possibilities for [a1, a2, a3, a4];

• 7 possibilities for [a1, a2, a3, a4, a5];

• 1 possibility for [a1, a2, a3, a4, a5, a6, a7], which determines [a8, a9, a10].

We now switch strategies and use LLL rather than linear programming.
We are searching for integer lattice points contained in a parallelepiped of small
volume that we expect to contain at most one such point.



Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64
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Example computation with N = 249 = 3 · 83, ε3 = ε83 = −1, m = 64
At this point we know that the L-function L(A, s) =

∑
ann−s of every modular abelian

surface A/Q with conductor 249 and local root numbers ε3 = ε83 = −1 satisfies

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) = (1, −2, −2, 1, 0, 4, −1, 0, 4, 0).

Increasing m to 3000 yields a system with 738 unknown an and 219 constraints, with k
ranging up to 77 and q up to 24. Using LLL (16 times) we are able to extend our
unique prefix of length 10 to a unique prefix of length 1000.

This determines the L-polynomials Lp(T ) for p ≤ 31, which is more than enough to
prove that any A/Q with this L-function prefix is generic (meaning End(AQ) = Z), and
to prove (via the Rankin-Selberg inequality) that there is at most one isogeny class of
abelian surfaces of conductor 249 (it is not hard to rule out other local root numbers).

The Jacobian of the genus 2 curve y2 + (x3 + 1)y = x2 + x is an obvious candidate
(conductor and a1, . . . , a1000 match), but it is (still) not known to be modular.

https://www.lmfdb.org/Genus2Curve/Q/249/a/249/1


Timings



Proving completeness
If our algorithm outputs a nonempty list of feasible tuples (a1, . . . , an0),
the next step is to show there is at most one L-function in S(g , N, ε) for each prefix.

For this step, we suppose that (a1, . . . , an0) is the prefix of two distinct automorphic
L-functions L(s, π1) and L(s, π2) in S(g , N, ε). The Rankin–Selberg convolution
L-function L(s, π1 ⊠ π2) is entire unless L(s, π1) and L(s, π2) have a common factor.

If they do, we reduce to the g = 1 case where everything is known. Otherwise, we
construct an inequality the coefficients of L(s, π1 ⊠ π2) must satisfy and show that
they do not (after increasing n0 if necessary), proving that no such π1 and π2 exist.

We eventually obtain a list of distinct tuples (a1, . . . , an0), each of which is the prefix
of at most one automorphic L-function in S(g , N, ε).

This gives us an upper bound for our search that we expect to be tight.
Finding an abelian variety for each prefix proves completeness subject to modularity.



Searching for genus 2 curves
Over the past five years we have conducted several searches for genus 2 curves of small
conductor. Below is a vCPU histogram from a computation we ran in 2022 that
enumerated over 1019 genus 2 curves in a large parallel computation run in the cloud.

This computation used 4,034,560 vCPUs in 73 data centers across the globe,
performing more than 300 vCPU years of computation in a few hours of real time.



Searching for genus 2 curves

Our searches found 1927 Jacobians of conductor ≤ 1500 with 451 distinct L-functions,
including many not previously known to arise for Jacobians (or even abelian surfaces).

We also found more than 6 million genus 2 curves of conductor ≤ 220 with more than
2.5 million distinct L-functions, which will be added to the LMFDB later this summer.

conductor bound 1000 10 000 100 000 1 000 000
curves in LMFDB 159 3069 20 265 66 158
curves found 942 29 514 493 899 6 075 571

L-functions in LMFDB 109 2807 19 775 65 534
L-functions found 201 9534 194 612 2 559 187



Thank you!



Bonus slide: Exploiting Galois representations

Let A/Q be an abelian surface of conductor N. For each m ∈ Z>1 we have a mod-m
Galois representation

ρA,m : Gal(Q(A[m])/Q) → GSp4(Z/mZ).

For p ∤ mN the charpoly χp ∈ (Z/mZ)[T ] of ρA,m(Frobp) ∈ GSp4(Z/mZ) satisfies

χp(T ) ≡ T 2gLp(T −1) mod m.

The m-torsion field Q(A[m]) is unramified away from p|mN and of degree at most
# GSp4(Z/mZ). For small m and N it is feasible to enumerate all such fields K and
their associated mod-m GSp4-representations, especially m = 2 and N a prime power.

Each representation yields a mod-m congruence constraints on Lp(T ) for primes
p ∤ mN. This dramatically reduces the amount of branching in our algorithm.


