- 18.315 PROBLEM SET 5 (due Tuesday, December 12, 2006.) Turn in at most 5 problems.
- 1. A domino tableau is a ribbon tableau of weight (2, 2, ..., 2). Let $DT(\lambda)$ be the number of domino tableaux of shape λ . Find a closed expression for the sum $\sum_{\lambda} DT(\lambda)^2$ over partitions λ such that $|\lambda| = 2n$.
- **2.** For partitions λ, μ, γ with k parts, prove that the Kostka number equals the Littlewood-Richardson coefficient $K_{\lambda\mu} = c_{\lambda,\gamma}^{\mu+\gamma}$, if γ satisfies the condition $\min |\gamma_i \gamma_{i+1}| > \mu_1$. (For example, the equality $K_{\lambda\mu} = c_{\lambda,\gamma}^{\mu+\gamma}$ holds if $\gamma = (kN, (k-1)N, \ldots, N)$ for sufficiently large N.)
- **3.** Construct a bijection between two variants BZ_1 and BZ_2 of Berenstein-Zelevinsky triangles. (BZ_1 involves the hexagon condition and BZ_2 has the tail-sum condition.)
- **4.** Construct a bijection between the set of Littlewood-Richardson tableaux $LR(\lambda/\mu, \nu)$ and the set of Knutson-Tao honeycombs with boundary rays given by λ , μ , and ν (as described in class).
- **5.** Prove Knutson-Tao's puzzle version of the LR-rule. (It is enough to show that the puzzle LR-rule is equivalent to another version: LR-tableaux, BZ-triangles, or KT-honeycombs.)
- **6.** Let $(\lambda/\mu)^{\vee}$ be the skew shape λ/μ rotated by 180°. Construct a bijection between the sets of Littlewood-Richardson tableaux $LR(\lambda/\mu,\nu)$ and $LR((\lambda/\mu)^{\vee},\nu)$.
- 7. Let V_{λ} be the irreducible representations of S_n labelled by partitions λ as in the Okounkov-Vershik construction. (That is the eigenvalues of the Jucys-Murphy elements in the representation V_{λ} are the contents of the shape λ .) Also let \tilde{V}_{λ} be the irreducible representation of S_n whose character χ_{λ} corresponds to the Schur function s_{λ} under the Frobenius characteristic map ch. Prove that $V_{\lambda} = \tilde{V}_{\lambda}$. In other words, show that Okounkov-Vershik's and Frobenius' approaches lead to the same labelling of the irreducible representations by partitions.
- **8.** (a) Prove that $\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y) = \prod_{i,j} \frac{1}{1-x_i y_j}$ and deduce that $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \, \delta_{\lambda \mu}$. (b) Prove that $\sum_{\lambda: |\lambda| = n} z_{\lambda}^{-1} p_{\lambda} = h_n$.
- **9.** Calculate all values of the character $\chi_{(n-1,1)}$ of the irreducible representation $V_{(n-1,1)}$ of S_n .
- **10.** For a partition λ , give a closed formula for the character value $\chi_{\lambda}((2,1,\ldots,1))$.