18.315 PROBLEM SET 4 (due Thursday, November 16.)

- **1.** Express the power symmetric function $p_k = x_1^k + x_2^k + x_3^k + \cdots$ as a linear combination of Schur functions s_{λ} .
- **2.** (a) Show that $s_{\lambda} \cdot p_2 = \sum_{\mu} s_{\mu} \sum_{\nu} s_{\nu}$, where the first sum is over partitions μ obtained from λ by adding a horizontal domino and the second sum is over ν obtained from λ by adding a vertical domino.
- (b) Let us encode a Young diagram λ by the 01-sequence, infinite in both directions, where 1's correspond to vertical steps and 0's correspond to horizontal steps as we go North-East along the border of λ . For example, $\lambda=(3,1)$ is encoded as $\cdots 111101001000\cdots$. Show that adding a horizontal or a vertical domino to λ corresponds to switching 1 and 0 two steps apart in the 01-sequence.
- (c) Characterize Young diagrams λ that can be subdivided into horizontal and vertical dominos.
- (d) Prove that the parity of the number of vertical dominos is the same for any two domino subdivisions of the same Young diagram λ .
- (e) Expand the product $(p_2)^n$ as a linear combination of Schur functions s_{λ} . (In other words, for any λ , calculate the coefficient of s_{λ} in this expansion.) For example, $(p_2)^2 = s_{(4)} s_{(3,1)} + 2s_{(2,2)} s_{(2,1)} + s_{14}$.
- (f)* Generalize parts (a)–(e) to p_k and expand the product $(p_k)^n$ as a linear combination of Schur functions.
- **3.** Prove the following hooklength-content formula:

$$s_{\lambda}(1, q, q^2, \dots, q^{n-1}) = q^{m(\lambda)} \prod_{x \in \lambda} \frac{1 - q^{n+c(x)}}{1 - q^{h(x)}} = q^{m(\lambda)} \prod_{x \in \lambda} \frac{[n + c(x)]_q}{[h(x)]_q}$$

where c(x) = j - i is the *content* and h(x) is the *hooklength* of a box x = (i, j) in λ , and $m(\lambda) = \sum (i - 1)\lambda_i$.

- **4.** Let A(n,k) be the number of reverse plane partitions of the triangular shape $\rho = (n-1, n-2, \ldots, 1)$ with entries $\leq k$.
- (a) Express the number A(n, k) as the determinant of a certain $k \times k$ -matrix (with entries given by explicit expressions).
 - (b) Find the limit $\lim_{k\to\infty} \frac{A(n,k)}{k^N}$, where $N=|\rho|=\binom{n}{2}$.
- **5.** We have constructed the three bijections f_{RSK} , f_{HG} , and f_V between the set of $n \times n$ -matrices with nonnegative integer entries and the set of reverse plane partitions of the square shape $n \times n$, where f_{RSK} is the RSK correspondence written via Gelfand-Tsetlin patterns (see Problem 8 from Problem Set 2); f_{HG} is the Hillman-Grassl correspondence; and f_V is the Viennot correspondence. Is there any relation between these bijections?

1

- **6.** For a partition λ with $|\lambda| = n$. Let $P_{\lambda,N}$ be the polytope of points $(x_{ij})_{(i,j)\in\lambda} \subset \mathbb{R}^n$ given by the conditions $x_{ij} \geq 0$; $x_{ij} \leq x_{i'j'}$ for $i \leq i'$ and $j \leq j'$; $\sum x_{ij} \leq N$.
- (a) Prove that $\operatorname{Vol}(P_{\lambda,1}) = f^{\lambda} \operatorname{Vol}(\Delta)$, where f^{λ} is the number of standard Young tableaux of shape λ and Δ is the simplex $\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid 0 \leq x_1 \leq \cdots \leq x_n; \sum x_i \leq 1\}$.
- (b) We proved (using the Hillman-Grassl correspondence) that the sum $\sum_T q^{\sum T_{ij}}$ over reverse plane partitions T of shape λ equals $\prod_{x \in \lambda} (1-q^{h(x)})^{-1}$. Deduce that the number $\#(P_{\lambda,N} \cap \mathbb{Z}^n)$ of integer lattice points in $P_{\lambda,N}$ equals the N-th coefficient in the Taylor expansion of $(1-q)^{-1}\prod_{x \in \lambda} (1-q^{h(x)})^{-1}$.
- (c) Use (a), (b), and the fact that $\operatorname{Vol}(P_{\lambda,1}) = \lim \frac{\#(P_{\lambda,N} \cap \mathbb{Z}^n)}{N^n}$ to deduce the hook-length formula $f^{\lambda} = \frac{n!}{\prod_{x \in \lambda} h(x)}$.
- 7. Let u_1, \ldots, u_n be some noncommutative variables. For a tableau T with entries $a_1, a_2, \ldots, a_N \in \{1, \ldots, n\}$ listed by columns bottom-

up, left-to-right, let $u^T := u_{a_1} u_{a_2} \dots u_{a_N}$. For example, for $T = \frac{1}{2} \frac{1}{3} \frac{1}{3}$, $u^T = u_2 u_1 u_3 u_1 u_3$. The noncommutative Schur polynomial $S_{\lambda}(u_1, \dots, u_n)$ is defined as the sum $\sum u^T$ over semi-standard tableaux of shape λ .

Let Y_i , $i \in \mathbb{Z}$ be the (noncommutative) operators acting on the space linear combinations of Young diagrams by $Y_i(\lambda) = \mu$ if μ is obtained from λ by adding a box to the *i*th diagonal; otherwise (if it is impossible to add a box to the *i*-th diagonal of λ), set $Y_i(\lambda) = 0$. For example $Y_1(\square) = \square$ and $Y_0(\square) = 0$.

- (a) Show that $S_{\lambda}(Y_{-k+1}, Y_{-k+1}, \dots, Y_{l-1}) \cdot \emptyset = \lambda$ if λ fits inside the $k \times l$ -rectangle.
- (b) Prove that the operators Y_i satisfy the relations $Y_i^2 = Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1} = 0$ and $Y_i Y_j = Y_j Y_i$ when $|i j| \ge 2$.
- (c) Let $H_k = \sum_{i_1 \leq i_2 \leq \cdots \leq i_k} Y_{i_1} \cdots Y_{i_k}$ and $E_k = \sum_{j_1 > j_2 > \cdots > j_k} Y_{j_1} \cdots Y_{j_k}$. Also set $H_0 = E_0 = 1$. Prove (using only relations from (b)) that all operators $E_1, E_2, \ldots, H_1, H_2, \ldots$ commute with each other. Also prove that $E_k H_0 E_{k-1} H_1 + E_{k-2} H_2 \cdots + (-1)^k E_0 H_k = 0$.
 - (d) Prove the following "noncommutative Cauchy identities":

$$\prod_{i=1}^{m} \prod_{j=-k+1}^{l-1} \frac{1}{1-x_i Y_j} = \sum_{\lambda} s_{\lambda}(x_1, \dots, x_m) S_{\lambda}(Y_{-k+1}, \dots, Y_{l-1})$$

$$\prod_{i=1}^{m} \prod_{j=l-1}^{-k+1} (1 + x_i Y_j) = \sum_{\lambda} s_{\lambda'}(x_1, \dots, x_m) S_{\lambda}(Y_{-k+1}, \dots, Y_{l-1})$$

where the sums are over λ fitting inside the $k \times l$ -rectangle. (Note the order of terms in the product.) Here x_1, \ldots, x_m are commutative variables (which commute with each other and with Y_j 's) and $s_{\lambda}(x_1, \ldots, x_m)$ are the usual Schur functions.

- **8.** A reduced decomposition of a permutation $w \in S_n$ is a way to write w as a product of adjacent transpositions $w = s_{i_1} s_{i_2} \cdots s_{i_l}$ of minimal possible length l (= the number of inversions in w). For example, the permutation $(3,2,1) \in S_3$ (written in one-line notation) has two reduced decompositions: $s_1 s_2 s_1$ and $s_2 s_1 s_2$.
- (a) For $n > k \ge 1$, calculate the number of reduced decompositions of the permutation $(k+1, k+2, \ldots, n, 1, 2, \ldots, k) \in S_n$.
- (b) Calculate the number of reduced decompositions of the maximal permutation $(n, n-1, \ldots, 2, 1) \in S_n$.
- (c) Say that two reduced decompositions are commutation equivalent if they can be obtained from each other by a sequence of switches of adjacent entries $s_i s_j \to s_j s_i$ for $|i-j| \ge 2$. (Equivalently, two reduced decomposition are commutation equivalent if the corresponding wiring diagrams are homotopy equivalent.) For example, $s_2 s_1 s_3$ is commutation equivalent to $s_2 s_3 s_1$.

For positive integers k, l, m such that k + l + m = n, calculate the number of classes of commutation equivalent reduced decompositions of the permutation $(k + l + 1, k + l + 2, ..., n, k + 1, k + 2, ..., k + l, 1, 2, ..., k) \in S_n$.

- **9.** (a) Let A be a pseudoline arrangement with n pseudolines such that every pair of pseudolines have exactly one intersection. Prove that A has at least n-2 triangular regions.
- (a)' You can try to prove a slightly weaker version of this claim for a line arrangement.
- (b) Construct a pseudoline arrangement which is not a line arrangement. (That is the pseudolines cannot be straightened.)
- 10. For a poset P, let C_k be the maximal number of elements in a union of k chains, and let A_k be the maximal number of elements in a union of k antichains. Prove that $\lambda = (C_1, C_2 C_1, C_3 C_2, ...)$ and $\mu = (A_1, A_2 A_1, A_3 A_2, ...)$ are partitions which are conjugate to each other: $\lambda' = \mu$.

In particular, this implies that if k is the maximal size an antichain (respectively, the maximal size of a chain) in P, than P can be subdivided into k chains (respectively, antichains).