- 18.315 PROBLEM SET 3 (due Thursday, October 26, 2006)
 Turn in at most 6 problems.
- 1. Prove the following identity for q-binomial coefficients

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{r=0}^{\min(k, n-k)} q^{r^2} \begin{bmatrix} k \\ r \end{bmatrix}_q \begin{bmatrix} n-k \\ r \end{bmatrix}_q$$

- **2.** For any $n \ge k \ge 0$, calculate explicitly the value of the *q*-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ at q = -1.
- **3.** (a) For a nonempty partition λ , prove that the skew Schur function $s_{\lambda/1}$ equals the sum of Schur functions s_{μ} over all partitions μ obtained from λ by removing a corner box.
- (b) For a partition λ whose Young diagram has at least two rows and at least two columns, prove that $s_{\lambda/(2)} s_{\lambda/(1^2)}$ equals $\sum s_{\mu} \sum s_{\nu}$ over all partitions μ obtained from λ by removing a horizontal domino and all partitions ν obtained from λ by removing a vertical domino.
 - (c) Find all partitions λ such that $s_{\lambda/(2)} = s_{\lambda/(1^2)}$.
- **4.** For a positive integer n and a partition $\lambda = (\lambda_1, \ldots, \lambda_n)$, let $\#SSYT(\lambda, n)$ be the total number of semi-standard Young tableaux of shape λ filled with entries $\leq n$. Calculate the generating function

$$F_n(q) = \sum_{\lambda = (\lambda_1, \dots, \lambda_n)} \#SSYT(\lambda, n) q^{|\lambda|},$$

- where the sum is over partitions $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n \ge 0)$ (with fixed n). For example, $F_1(q) = 1/(1-q)$ and $F_2(q) = 1/((1-q)^2(1-q^2))$.
- **5.** Find a closed formula for the number $\#SSYT(\lambda, n)$ of semi-standard Young tableaux of shape λ filled with entries $\leq n$ (see the previous problem).
- **6.** For a strict partition $\lambda = (\lambda_1 > \lambda_2 > \dots > \lambda_l > 0)$, the *shifted Young diagram* of shape λ is the collection of boxes with coordinates $\{(i,j) \mid i=1,\dots,l;\ j=i,i+1,\dots,i+\lambda_i\}$. Let $S_{k,n}$ be the number of shifted Young diagrams such that $\lambda_1 \leq n$ and $|\lambda| = \lambda_1 + \dots + \lambda_l = k$. Prove that the sequence, $S_{0,n}, S_{1,n}, \dots, S_{N,n}$ (where N = n(n+1)/2) is unimodal, that is

$$S_{0,n} \leq S_{1,n} \leq \cdots \leq S_{\lfloor N/2 \rfloor,n} \geq \cdots \geq S_{N,n}.$$

7. Prove that $(x_1 + x_2 + x_3 + \cdots)^n = \sum s_{\kappa}$, where the sum of skew Schur functions is over all 2^{n-1} ribbons κ with n boxes.

- **8.** For a subset $I \subseteq [n-1]$, let $\beta(I)$ be the number of permutations $w \in S_n$ with the set of descents I, that is permutations w such that $w_i > w_{i+1}$ if $i \in I$ and $w_j < w_{j+1}$ if $j \in [n-1] \setminus I$. Let $S(I) := \{j \in [n-2] \mid \#(\{j,j+1\} \cap I) = 1\}$. Prove that, for two subsets $I, J \subseteq [n-1]$, if $S(I) \supseteq S(J)$, then $\beta(I) \ge \beta(J)$.
- **9.** Show that for 3 partititions λ, μ, ν such that $|\lambda| = |\mu| = |\nu|$, we have $K_{\lambda,\mu} \leq K_{\lambda,\nu}$ when $\mu \geq \nu$ in the dominance order, that is $\mu_1 + \cdots + \mu_i \geq \nu_1 + \cdots + \nu_i$, for $i = 1, 2, \ldots$
- 10. We constructed in class, the operation \tilde{s}_i acting on semi-standard Young tableaux T that swaps in the number of i's and (i+1)'s in T. (This operation is called the Bender-Knuth involution.) Let $q_i := (\tilde{s}_1\tilde{s}_2\cdots\tilde{s}_i)(\tilde{s}_1\tilde{s}_2\cdots\tilde{s}_{i-1})(\tilde{s}_1\tilde{s}_2\cdots\tilde{s}_{i-2})\cdots(\tilde{s}_1)$. Let $s_i := q_i\,\tilde{s}_1\,(q_i)^{-1}$. Show that the operators s_i satisfy the Coxeter relations: $(s_i)^2 = (s_is_j)^2 = (s_is_{i+1})^3 = 1$, where $j \neq i \pm 1$.