- 1. Let f^{λ} be the number of standard Young tableaux of shape λ .
- (a) (5 points)Prove that the sum $\sum (f^{\lambda})^2$ over all partitions λ of n with at most 2 parts (that is $\lambda = (\lambda_1, \lambda_2), \lambda_1 \geq \lambda_2 \geq 0, \lambda_1 + \lambda_2 = n$) equals the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$. (You can use the combinatorial interpretation of C_n as the number of Dyck paths.)
- (b) (5 points) Find (and prove) a closed formula for the sum $\sum f^{\lambda}$ over partitions λ of n with at most 2 parts. The formula might involve a summation.
- **2.** Let $V := \{(z_1, \ldots, z_n) \mid z_1 + \cdots + z_n = 0\} \simeq \mathbb{C}^{n-1}$. The symmetric group S_n acts on V by permutations of the coordinates.
- (a) (5 points) Find the Gelfand-Tsetlin basis of the representation V.

Hint: Find the basis v_1, \ldots, v_{n-1} of V such that each v_i is a common eigenvector of the Jucys-Murphy elements $X_i = (1, i) + (2, i) + \cdots + (i-1, i) \in \mathbb{C}[S_n]$, for $i = 1, \ldots, n-1$.

(b) (5 points) Prove that V is equivalent to a certain irreducible representation V_{λ} of S_n and identify the partition λ .

Hint: Look at eigenvalues of the Jucys-Murphy elements and use the correspondence with content vectors of Young tableaux.

- **3.** (a) (5 points) Prove that the Jucys-Murphy elements X_i and X_j commute with each other (that it $X_iX_j = X_jX_i$) using only the definition of these elements.
- (b) (5 points) Let Cyc_n be the element the group algebra $\mathbb{C}[S_n]$ given by $\operatorname{Cyc}_n = \sum w$ over all permutations $w \in S_n$ with a single cycle of size n. Express Cyc_n in terms of the Jucys-Murphy elements for n=1,2,3,4.
- (c)* (5 points) Express Cyc_n in terms of the Jucys-Murphy elements for an arbitrary n.
- (d)* (5 points) It is clear that $X_1 = 0$, $X_2^2 = 1$. Check that $X_3^3 = 3X_3 + 2X_2$. For any i, express some power $(X_i)^d$ as a polynomial in $f(X_1, \ldots, X_i)$ of degree deg f < d.
- **4.** (10 points) Let T be a rooted tree on n nodes. Prove the following "baby hooklength formula:"

$$ext(T) = \frac{n!}{\prod_{v \in T} h(v)}.$$

Here ext(T) is the number of linear extensions of T, that is ext(T) is the number of ways to label the nodes of T by $1, \ldots, n$ so that, for each node labeled i, all children of this node have labels greater than i. The

"hooklength" h(v) of a node v in T is the total number of descendants of v (including the node v itself).

5. (a) (5 points) An *involution* is a permutation $w \in S_n$ such that $w^2 = 1$ (that is w has only cycles of sizes 1 or 2). Prove that the number of involutions in S_n equals

$$I_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{2^k \, k! \, (n-2k)!}.$$

- (b) (5 points) We know that $\sum_{|\lambda|=n} (f^{\lambda})^2 = n!$. Prove that the sum $\sum_{|\lambda|=n} f^{\lambda}$ equals the number I_n of involutions $w \in S_n$.
- **6.** A skew Young diagram $\kappa = \lambda/\mu$ is the set-theoretic difference of two usual Young diagrams shapes λ and μ . For example, $\lambda/1$ is the Young diagram of shape λ with the top left box removed. One can define standard Young tableaux for skew shapes in the usual way as fillings of boxes with numbers $1, \ldots, n$ that increase in rows and columns. Let f^{κ} be the number of such skew Young tableaux.

A ribbon is a skew Young diagram such that that (i) it has a single connected component, and (ii) it contains no 2×2 -box inside. (We consider ribbons up to parallel translations.) For example, there are

2 ribbons with 2 boxes:
$$\square$$
, $=$; 4 ribbons with 3 boxes: \square , $=$, $=$, etc.

- (a) (5 points) Find the number of ribbons with n boxes.
- (b) (5 points) Find the sum $\sum f^{\kappa}$, where κ varies over all ribbons with n boxes.
- (c)* (10 points) For given n, find a ribbon κ with n boxes such that f^{κ} has the maximal possible value (among all ribbons with n boxes). Prove that this is the maximal possible value.
- 7. A $horizontal\ k$ -strip is a skew Young shape with k boxes that contains no two boxes in the same column. (It may contain several connected components.)

Let U_k and D_l be the operators that act on the space \mathbb{C}^Y of linear combinations of Young diagrams, as follows. $U_k : \lambda \mapsto \sum \mu$, there the sum is over all μ obtained from λ by adding a horizontal k-strip. $D_l : \lambda \mapsto \sum \mu$ there the sum is over all μ obtained from λ by removing a horizontal l-strip. In particular, U_1 and D_1 are the "up" and "down" operators for the Young lattice.

(a) (10 points) Prove that, for any $k, l \geq 0$,

$$U_k U_l = U_l U_k, \qquad D_k D_l = D_l D_k$$

$$D_k U_l = \sum_{r=0}^{\min(k,l)} U_{l-r} D_{k-r}$$

- (b)* (10 points) Use these operations to give an alternative proof of the fact that the number of pairs (P,Q) of semi-standard Young tableaux of the same shape and with weights $(\beta_1, \beta_2, ...)$ and $(\gamma_1, \gamma_2, ...)$ equals the number of matrices $A = (a_{ij})$ with nonnegative integer entries, with row sums $\sum_j a_{ij} = \beta_i$ and column sums $\sum_i a_{ij} = \gamma_j$ (as in RSK-correspondence).
- 8. Fix two sequences of integers r_1, \ldots, r_n and c_1, \ldots, c_n . Let S_1 be the set of nonegative integer $n \times n$ -matrices $A = (a_{ij})$ with given row sums $\sum_j a_{ij} = c_i$ and column sums $\sum_i a_{ij} = r_j$. Let S_2 be the set of nonnegative integer $n \times n$ -matrices $B = (b_{ij})$ such the entries weakly decrease in the rows and in the columns (that is $b_{ij} \geq b_{i',j'}$ whenever $i \leq i'$ and $j \leq j'$) and the diagonal sums $d_k = \sum_{j-i=k} b_{ij}$ are equal to $d_{n-i} = r_1 + \cdots + r_i$ and $d_{-n+i} = c_1 + \cdots + c_i$, for $i = 1, \ldots, n$.
- (a) (5 points) Construct an explicit bijection between S_1 and S_2 for n=2,3.
 - (b) (5 points) Prove that $|S_1| = |S_2|$, for any n.
- 9*. (10 points) In class we constructed the tranformations of semi-standard Young tableaux $\tilde{s}_i: T \mapsto \tilde{T}$ such that (1) T and \tilde{T} have the same shape, and (2) if the weight of T is $(\beta_1, \ldots, \beta_i, \beta_{i+1}, \ldots)$ then the weight of \tilde{T} is $(\beta_1, \ldots, \beta_{i+1}, \beta_i, \ldots)$. Modify these operations and define new operations s_i acting on semi-standard tableaux that satisfy the above properties and, in addition, satisfy the Coxeter relations: $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, s_i^2 = 1, s_i s_j = s_j s_i$ for $j \neq i \pm 1$.

Then these operations can be extended to the action of the symmetric group on semi-standard tableaux by setting $w(T) := s_{i_1} \cdots s_{i_l}(T)$ for a permutation $w = s_{i_1} \cdots s_{i_l}$.