PROBLEM SET 5 (due on Thursday 12/09/2004)
The problems worth 10 points each.

Problem 1 A system of distinct representatives (SDR) in a collection of subsets A_{1}, \ldots, A_{n} is a choice of elements $x_{i} \in A_{n}$, for $i=1, \ldots, n$, such that x_{1}, \ldots, x_{n} are all distinct.

Find the number of different SDR's for $A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{n-1}=$ $\{n-1, n\}$, and $A_{n}=\{n, 1\}$. Can you reformulate this problem in terms of rook placements?

Problem 2 Find the number R_{n} of different SDR's for $A_{1}=\{1,2,3\}, A_{2}=$ $\{2,3,4\}, A_{n-2}=\{n-2, n-1, n\}, A_{n-1}=\{n-1, n, 1\}$, and $A_{n}=\{n, 1,2\}$. Hint: Try to express the numbers R_{n} in terms of the Fibonacci numbers.

Problem 3 Let G be a connected graph with positive weights on edges. We would like to find a subgraph H of G such that (1) the graph $G \backslash H$ (obtained from G by removing edges of H) is connected; (2) the sum of weights of edges in H is as big as possible for subgraphs that satisfy (1).

Let us try to use the greedy algorithm: Pick an edge e_{1} of G of maximal weight such that $G \backslash\left\{e_{1}\right\}$ is connected; then pick an edge e_{2} of maximal weight such that $G \backslash\left\{e_{1}, e_{2}\right\}$ is still connected, etc. Will this algorithm always produce a subgraph with the desired property? Prove that the greedy algorithm always works or find a counterexample.

Problem 4 Find the number of spanning trees in the 3×3-grid:

Problem 5 Let K_{3} be the complete graph on 3 vertices. Find the number of spanning trees in $K_{3} \times K_{3} \times \cdots \times K_{3}$ (n factors). This graph can be drawn on the n-dimensional torus.

Problem 6 Prove that the number of spanning trees in the complete bipartite graph $K_{m n}$ is $m^{n-1} n^{m-1}$. Hint: You can use the Matrix-Tree theorem or try to modify Prüfer coding for bipartite graphs.

Problem 7 Let $L=\left(l_{i j}\right)$ be a symmetric $n \times n$-matrix with real entries such that $l_{i j} \leq 0$, for $i \neq j$, and $\sum_{j} l_{i j} \geq 0$, for any i (all row sums are nonnegative).
(A) Prove that $\operatorname{det}(L) \geq 0$.
(B) Recall that a principal minor of a matrix is the determinant of a square submatrix located in rows and columns with the same index set. A matrix is called positive-definite if all its principal minors are strictly positive. Find a simple necessary and sufficient condition that describes all cases when matrix L is positive-definite.
(C)* Let $L=\left(l_{i j}\right)$ be any symmetric $n \times n$-matrix with real entries such that $l_{i j} \leq 0$. (Drop the second condition.) Find an example of a positive-definite matrix of this form that does not have nonnegative row sums. Prove that such a matrix is positive-definite if and only if there are exist numbers $h_{1}, \ldots, h_{n}>0$ such that $\sum_{j} h_{i} l_{i j}>0$, for any i.

Problem 8 A sequence $\left(f_{1}, \ldots, f_{n}\right), f_{i} \in\{1, \ldots, n\}$ is called a parking function if it satisfies the following condition:

$$
\#\left\{i \mid f_{i} \leq k\right\} \geq k, \quad \text { for } k=1, \ldots, n
$$

(A) Show that a sequence of positive integers $\left(f_{1}, \ldots, f_{n}\right)$ is a parking function if and only its increasing rearrangement $c_{1} \leq c_{2} \leq \ldots \leq c_{n}$ satisfies $c_{i} \leq i$, for $i=1, \ldots, n$.
(B) Find a bijection between parking functions and Catalan words $\left(\epsilon_{1}, \ldots, \epsilon_{2 n}\right)$, $\epsilon_{i}= \pm 1$ with all 1's labelled by the integers $1, \ldots, n$ such that if $\epsilon_{i}=\epsilon_{i+1}=$ $\cdots=\epsilon_{j}=1$ then their labels satisfy $l_{i}<l_{i+1}<\cdots<l_{j}$. For example, for $n=2$ we have the following 3 labelled Catalan words: $\left(1^{1}, 1^{2},-1,-1\right),\left(1^{1},-1,1^{2},-1\right)$, and $\left(1^{2},-1,1^{1},-1\right)$. (Labels are indicated by superscripts.) Hint: Sequences $c_{1} \leq c_{2} \leq \cdots \leq c_{n}$ from part (B) are in 1-1 correspondence with Catalan words.
$(\mathrm{C})^{*}$ Find a bijection between labelled Catalan words from part (B) and spanning trees in K_{n+1}.

Problem 9 Calculate the chromatic polynomial for the $2 \times n$-grid, i.e., for the graph on $2 n$ vertices connected by edges as follows:

Problem 10 Fix n and k such that $k<n$. Consider the graph on the vertices $1, \ldots, n$ such that $(i, j), i<j$, is an edge whenever $j-i \leq k$. Find the number of acyclic orientations of this graph.

