PROBLEM SET 5 (due on Thursday 12/09/2004)

The problems worth 10 points each.

Problem 1 A system of distinct representatives (SDR) in a collection of subsets A_1, \ldots, A_n is a choice of elements $x_i \in A_n$, for $i = 1, \ldots, n$, such that x_1, \ldots, x_n are all distinct.

Find the number of different SDR's for $A_1 = \{1, 2\}$, $A_2 = \{2, 3\}$, $A_{n-1} = \{n-1, n\}$, and $A_n = \{n, 1\}$. Can you reformulate this problem in terms of rook placements?

Problem 2 Find the number R_n of different SDR's for $A_1 = \{1, 2, 3\}$, $A_2 = \{2, 3, 4\}$, $A_{n-2} = \{n - 2, n - 1, n\}$, $A_{n-1} = \{n - 1, n, 1\}$, and $A_n = \{n, 1, 2\}$. Hint: Try to express the numbers R_n in terms of the Fibonacci numbers.

Problem 3 Let G be a connected graph with positive weights on edges. We would like to find a subgraph H of G such that (1) the graph $G \setminus H$ (obtained from G by removing edges of H) is connected; (2) the sum of weights of edges in H is as big as possible for subgraphs that satisfy (1).

Let us try to use the greedy algorithm: Pick an edge e_1 of G of maximal weight such that $G \setminus \{e_1\}$ is connected; then pick an edge e_2 of maximal weight such that $G \setminus \{e_1, e_2\}$ is still connected, etc. Will this algorithm always produce a subgraph with the desired property? Prove that the greedy algorithm always works or find a counterexample.

Problem 4 Find the number of spanning trees in the 3×3 -grid:

•	_	٠	_	•
•	_	٠	_	٠
•	—	٠	—	٠

Problem 5 Let K_3 be the complete graph on 3 vertices. Find the number of spanning trees in $K_3 \times K_3 \times \cdots \times K_3$ (*n* factors). This graph can be drawn on the *n*-dimensional torus.

Problem 6 Prove that the number of spanning trees in the complete bipartite graph K_{mn} is $m^{n-1}n^{m-1}$. Hint: You can use the Matrix-Tree theorem or try to modify Prüfer coding for bipartite graphs.

Problem 7 Let $L = (l_{ij})$ be a symmetric $n \times n$ -matrix with real entries such that $l_{ij} \leq 0$, for $i \neq j$, and $\sum_j l_{ij} \geq 0$, for any *i* (all row sums are nonnegative). (A) Prove that det $(L) \geq 0$.

(B) Recall that a *principal minor* of a matrix is the determinant of a square submatrix located in rows and columns with the same index set. A matrix is called *positive-definite* if all its principal minors are strictly positive. Find a simple necessary and sufficient condition that describes all cases when matrix L is positive-definite.

(C)* Let $L = (l_{ij})$ be any symmetric $n \times n$ -matrix with real entries such that $l_{ij} \leq 0$. (Drop the second condition.) Find an example of a positive-definite matrix of this form that does not have nonnegative row sums. Prove that such a matrix is positive-definite if and only if there are exist numbers $h_1, \ldots, h_n > 0$ such that $\sum_i h_i l_{ij} > 0$, for any *i*.

Problem 8 A sequence (f_1, \ldots, f_n) , $f_i \in \{1, \ldots, n\}$ is called a parking function if it satisfies the following condition:

 $\#\{i \mid f_i \le k\} \ge k, \qquad \text{for } k = 1, \dots, n.$

(A) Show that a sequence of positive integers (f_1, \ldots, f_n) is a parking function if and only its increasing rearrangement $c_1 \leq c_2 \leq \ldots \leq c_n$ satisfies $c_i \leq i$, for $i = 1, \ldots, n$.

(B) Find a bijection between parking functions and Catalan words $(\epsilon_1, \ldots, \epsilon_{2n})$, $\epsilon_i = \pm 1$ with all 1's labelled by the integers $1, \ldots, n$ such that if $\epsilon_i = \epsilon_{i+1} = \cdots = \epsilon_j = 1$ then their labels satisfy $l_i < l_{i+1} < \cdots < l_j$. For example, for n = 2 we have the following 3 labelled Catalan words: $(1^1, 1^2, -1, -1), (1^1, -1, 1^2, -1)$, and $(1^2, -1, 1^1, -1)$. (Labels are indicated by superscripts.) Hint: Sequences $c_1 \leq c_2 \leq \cdots \leq c_n$ from part (B) are in 1-1 correspondence with Catalan words. (C)* Find a bijection between labelled Catalan words from part (B) and

spanning trees in K_{n+1} .

Problem 9 Calculate the chromatic polynomial for the $2 \times n$ -grid, i.e., for the graph on 2n vertices connected by edges as follows:

•	_	•	_	٠	_···	_	٠
•	_	٠	_	•	$-\cdots$	_	٠

Problem 10 Fix n and k such that k < n. Consider the graph on the vertices $1, \ldots, n$ such that (i, j), i < j, is an edge whenever $j - i \le k$. Find the number of acyclic orientations of this graph.