PROBLEM SET 4 (due on Tuesday 11/09/2004)
The problems worth 10 points each.

Problem 1 Let a_{n} be the sequence of integers given by the recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}$, for $n \geq 2$, and $a_{0}=a_{1}=2$. Find an explicit formula for the numbers a_{n}.

Problem 2 Find two constants b and c such that the sequence $a_{n}=10^{n}-2^{n}$ satisfies the recurrence relation $a_{n}=b a_{n-1}+c a_{n-2}$.

Problem 3 Let a_{n} be the sequence given by the recurrence relation $a_{n}=$ $a_{n-2}+1$, for $n \geq 2$, and $a_{0}=a_{1}=1$. Find the ordinary and the exponential generating functions of this sequence. Can you give a combinatorial interpretation of the numbers a_{n} in terms of partitions of some kind?

Problem 4 Two sequences $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ are related by $b_{n}=\sum_{k=0}^{n} a_{k}$. What is the relationship between ordinary generating functions of these sequences?

Problem 5 Two sequences $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ are related by $b_{n}=\sum_{k \geq 0}^{\infty} \frac{a_{n+k}}{k!}$. (Assume that the sum converges.) What is the relationship between exponential generating functions of these sequences?

Problem 6 A star is a graph that contains a vertex adjacent to all edges of the graph. (In particular, the graph with a single vertex and the graph with a single edge are stars.) Let us say that a simple graph G is stellar if every connected component of G is a star. Let s_{n} be the number of stellar subgraphs of the complete graph K_{n}. We have $s_{0}=1, s_{1}=1, s_{2}=2, s_{3}=7, \ldots$ Find the exponential generating function $\sum_{n \geq 0} s_{n} \frac{x^{n}}{n!}$ for the numbers s_{n}.

Problem 7 Let $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ be the Catalan number and $C(x)=\sum_{n \geq 0} C_{n} x^{n}$. The Motzkin number M_{n} is defined as the number of paths from $(0,0)$ to $(n, 0)$ that never go below the x-axis and are made of the steps $(1,0),(1,1)$, and $(1,-1)$. We have $M_{0}=1, M_{1}=1, M_{2}=2, M_{3}=4, \ldots$ Let $M(x)=$ $1+\sum_{n \geq 0} M_{n} x^{n+1}=1+x+x^{2}+2 x^{3}+4 x^{4}+\cdots$. Show that $M(x)=C(x /(1+x))$.

Problem 8 Calculate the determinant of the almost upper-triangular $n \times n$ matrix

$$
A=\left(a_{i j}\right), \text { where } \quad a_{i j}= \begin{cases}2^{j-i+1} & \text { if } j-i+1 \geq 0 \\ & \text { otherwise }\end{cases}
$$

Problem 9 Find a bijection between (unlabelled) plane binary trees with n leaves and (unlabelled) planar rooted trees with n vertices. (The numbers of these objects are the Catalan numbers.)

Problem 10 For a Catalan path P, let $h(P)$ be the number points in P located on the x-axis (excluding the initial and the final points $(0,0)$ and $(2 n, 0)$). Let $C_{n}(q)$ be the sum $\sum_{P} q^{h(P)}$ over Catalan paths of length $2 n$. For example, $C_{2}(q)=1+q$ and $C_{3}(q)=2+2 q+q^{2}$. In particular, $C_{n}(1)$ is the Catalan number. Find an explicit expression for the generating function $C(x, q)=\sum_{n>0} C_{n}(q) x^{n}=1+x+(1+q) x^{2}+\left(2+2 q+q^{2}\right) x^{3}+\cdots$ for these polynomials. Hint: Try to express $C(x, q)$ in terms of the generating function for the Catalan numbers.

Bonus Problems

$$
A=\left(a_{i j}\right), \text { where } \quad a_{i j}=\left\{\begin{array}{cl}
1 & \text { if } i=j \\
-1 & \text { if } i=j \pm 1 \\
1 & \text { if } i=j \pm 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Problem $12\left(^{*}\right)$ Let M_{n} be the number of perfect matching m in the complete graph $K_{2 n}$ such that

- m contains no pair of crossing edges $(i, k),(j, l)$, for $i<j<k<l$.
- m contains no pair of edges $(i, j),(i-1, j+1)$, for $i<j$.

Also let \tilde{M}_{n} be the number of perfect matching \tilde{m} in the complete graph $K_{2 n}$ such that

- \tilde{m} contains no pair of nesting edges $(i, l),(j, k)$, for $i<j<k<l$.
- \tilde{m} contains no pair of edges $(i, j),(i+1, j+1)$, for $i<j$.

Show that $M_{n}=\tilde{M}_{n}$.
 divides the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. Then $m_{n}+1$ equals the sum of digits in the binary expansion of $n+1$.

For example, $C_{6}=132$ is divisible by 2^{2} but not divisible by 2^{3} because $6+1=111$ (binary) has 3 digits 1 .

