PROBLEM SET 2 (due on Thursday 10/07/2004)
The problems worth 10 points each.

Problem 1 Find the number of five-digit positive integers such that all digits are different. Assume that the first digit is not ' 0 '.

Problem 2 Prove that $\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}$ using the Binomial theorem. Can you give a combinatorial proof, as well?

Problem 3 Find the minimal number of adjacent transpositions needed to obtain the permutation $2,4,7,1,5,8,3,6$ from $8,7,1,3,5,2,4,6$.

Problem 4 Show that $\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n}{k}=\binom{n+1}{k+1}$, for $0 \leq k \leq n$.
Problem 5 Prove that the following 3 numbers are equals:
(A) the number of partitions of n into at most k parts,
(B) the number of partitions of $n+k$ into exactly k parts,
(C) the number of partitions of n into parts less than or equal to k.

Problem 6 Let $p(n)$ be the total number of partitions of n. Show that $p(n)-$ $p(n-1)$ equals the number of partitions of n into parts greater than 1.

Problem 7 Find the number of partitions of 14 into 4 nonzero parts of different sizes.

Problem 8 Prove that the determinant

$$
\left\lvert\, \begin{array}{ccc}
\binom{n}{k} & \binom{n}{k+1} & \binom{n}{k+2} \\
\binom{n}{k-1} & \binom{n}{k} & \binom{n}{k+1} \\
\binom{n}{k-2} & \binom{n}{k-1} & \binom{n}{k}
\end{array}\right.
$$

is strictly positive, for any integer n and k such that $0 \leq k \leq n$.
Problem 9 Find the number of ways to subdivide the set $\{1,2,3,4,5,6,7,8\}$ into 4 disjoint 2 element subsets? What about the set $\{1, \ldots, 2 n\}$?

Problem 10 Let $F_{n}^{\geq k}$ be the number of compositions of n into parts greater than or equal to r, for some positive n and r. Show that these numbers satisfy the generalized Fibonacci relation:

$$
F_{n}^{\geq r}=F_{n-1}^{\geq r}+F_{n-r}^{\geq r}, \quad \text { for } n>r .
$$

Bonus Problems:

Problem 11 (*) Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition whose Young diagram D_{λ} fits inside the $n \times n$-square, i.e, $n \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. Recall that the number of rook placements in the diagram D_{λ} equals $R_{\lambda}=\lambda_{n}\left(\lambda_{n-1}-1\right)\left(\lambda_{n-2}-\right.$ 2) $\cdots\left(\lambda_{1}-n+1\right)$, provided that all factors are strictly positive. (Otherwise, there is no way to place n nonattacking rooks in D_{λ}.)

Assume that $\lambda_{n-i}>i$, for $i=0, \ldots, n-1$. Let $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{n}^{\prime}\right)$ be the conjugate partition to λ, i.e., its Young diagram $D_{\lambda^{\prime}}$ is obtained from D_{λ} by reflection with respect to the main diagonal. Prove that
$\left\{\lambda_{n}, \lambda_{n-1}-1, \lambda_{n-2}-2, \ldots, \lambda_{1}-n+1\right\}=\left\{\lambda_{n}^{\prime}, \lambda_{n-1}^{\prime}-1, \lambda_{n-2}^{\prime}-2, \ldots, \lambda_{1}^{\prime}-n+1\right\}$. as multisets. For example, for $\lambda=(6,5,5,3,2,2)$ we have $\lambda^{\prime}=(6,6,4,3,3,1)$ and $\{2,1,1,2,1,1\}=\{1,2,1,1,2,1\}$. Can you present a permutation that transforms the first multiset to the second multiset?

What can you say if the condition $\lambda_{n-i}>i$ does not hold for some i ?
Problem 12 (*) Let us say that a permutation $w=w_{1}, w_{2}, \ldots, w_{n}$ is 132avoiding if there is no triple of indices $i<j<k$ such that $w_{i}<w_{k}<w_{j}$. Recall that the code of the permutation w is the sequence $\left(c_{1}, \ldots, c_{n}\right)$, where $c_{i}=\#\left\{j>i \mid w_{j}<w_{i}\right\}$, for $i=1, \ldots, n$.
(A) Show that the code of w is weakly decreasing $c_{1} \geq c_{2} \geq \cdots \geq c_{n}$ if and only if w is 132-avoiding.
(B) Find the number of 132-avoiding permutations in S_{n}.

Problem 13 (*) A royal rook is a new type of chessman that can move as rook or king. In how many ways can 8 royal rooks be placed on an 8×8 chessbord so that no two royal rooks attack each other?

Problem 14 (*) The Bell number $B(n)$ is the number of set partitions of the set $\{1,2, \ldots, n\}$ into a disjoint union of nonempty subsets. For example,

$$
B(3)=\#\{123,12|3,13| 2,23|1,1| 2 \mid 3\}=5 .
$$

(The bars ' \mid ' subdivide the set.) Show that the Bell number $B(n)$ equals the number of set partitions of the set $1,2, \ldots, n+1$ into a disjoint union of nonempty subsets such that no subset contains two adjacent numbers i and $i+1$. For example,

$$
\#\{1|2| 3|4,13| 2|4,14| 2|3,24| 1|3,13| 24\}=5=B(3) .
$$

Problem 15 (*) For an $n \times k$ matrix, let us first arrange entries in each row in the weakly increasing order by permuting them; then arrange entries in each column in the weakly increasing order by permuting them. Show that entries of the resulting matrix weakly increase in both rows and columns.

Problem 16 (*) Prove bijectively that, for any positive n and r, the number of compositions of $n+r-1$ into parts greater than or equal to r is equal to the number of compositions of n into parts congruent to 1 modulo r.

