18.218 Problem Set 1 (due Monday, April 02, 2018)

Solve as many problems as you want. Turn in your favorite problems. (Is is enough to turn in 3-4 problems.)

Problem 1. Let $T_{m, n}$ be the polytope (called the transportation polytope) of real $m \times n$ matrices $A=\left(a_{i j}\right)$ such that (1) all $a_{i j} \geq 0$; (2) (column sums) $\sum_{i} a_{i j}=m$, for any j; (3) (row sums) $\sum_{j} a_{i j}=n$, for any i.
(a) Describe the vertices of the polytope $T_{m, m+1}$ and find their number.
(b)* Can you say anything about vertices of $T_{m, n}$ when $n \neq m-$ $1, m, m+1$?
Problem 2. Find the f-vector $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ of the hypersimplex $\Delta_{k n}$. Here f_{i} is the number of i-dimensional faces of the hypersimplex.
Problem 3. (a) Prove that the Eulerian numbers $A(n, k)$ (the numbers of permutations in S_{n} with k descents) can be computed using the Euler triangle. (Recall that the Euler triangle is similar to the Pascal triangle but with weights.)
(b) Prove the formula for the Eulerian numbers:

$$
A(n, k)=\sum_{i=0}^{k+1}(-1)^{i}\binom{n+1}{i}(k+1-i)^{n}
$$

Problem 4. (Multi-triangulations of n-gons)
(a) Prove that any r-triangulation of an n-gon contains exactly $r(2 n-$ $2 r-1)$ edges.
(b) Prove that 2-triangulations of an n-gon are in bijection with pairs of nested Dyck paths.
(c) Prove that r-triangulations of an n-gon are in bijection with collections of r nested Dyck paths.
(d) Prove that the number of r-triangulations of an n-gon is given by the deteminant of $r \times r$ matrix $A=\left(a_{i j}\right)$, where $a_{i j}=C_{m+i+j-2}$ (the Catalan numbers). (Express m in terms of n and r.)

Problem 5. Let $D_{k n}$ be the directed graph on the vertex set $\binom{[n]}{k}$ with directed edges $I \rightarrow J$ if $j_{1}=i_{1}, j_{2}=i_{2}, \ldots, j_{s-1}=i_{s-1}, j_{s}=i_{s}+1$ $(\bmod n), j_{s+1}=i_{s+1}, \ldots, j_{k}=i_{k}$ for some $s \in[k]$. We proved in class that the number of cyles in the graph $D_{k n}$ of length n is the Eulerian number $A(n-1, k-1)$. Find an expression for the number of simple cycles of length $r n$ in the graph $D_{k n}$.

Problem 6. Let $M \subseteq\binom{[n]}{k}$. Is it true that the following three properties are equivalent?

Exchange Property: For any $I, J \in M$ and any $i \in I$, there exists $j \in J$ such that $(I \backslash\{i\}) \cup\{j\} \in M$.

Stronger Exchange Property: For any $I, J \in M$ and any $i \in I$, there exists $j \in J$ such that both $(I \backslash\{i\}) \cup\{j\}$ and $(J \backslash\{j\}) \cup\{i\}$ are in M.

Even Stronger Exchange Property: For any $I, J \in M$, any $r \geq 1$, and any $i_{1}, \ldots, i_{r} \in I$, there exist $j_{1}, \ldots, j_{r} \in J$ such that both $(I \backslash$ $\left.\left\{i_{1}, \ldots, i_{r}\right\}\right) \cup\left\{j_{1}, \ldots, j_{r}\right\}$ and $\left(J \backslash\left\{j_{1}, \ldots, j_{r}\right\}\right) \cup\left\{i_{1}, \ldots, i_{r}\right\}$ are in M.

Prove the equivalence of (some of) these properties or construct counterexamples.

Problem 7. Let M be a nonempty subset of $\binom{[n]}{k}$.
(a) Prove that M is a matroid (that is, M satisfies the above Exchange Property) if and only if the set $w(M)$ has a unique minimal element in the Gale order, for any permutation $w \in S_{n}$.
(b) Prove that M is a matroid if and only if the polytope $P_{M}:=$ $\operatorname{conv}\left\{e_{I} \mid I \in M\right\}$ has all edges of the form $\left[e_{I}, e_{J}\right]$ for $I, J \in\binom{[n]}{k}$ such that $|I \backslash J|=|J \backslash I|=1$.

Problem 8. Check that the following objects satisfy the Exachange Property (that is, they are matroids) but they are not realizable over \mathbb{R} :
(a) The Fano plane.
(b) The non-Pappus matroid.
(b) The non-Desargues matroid.

Problem 9. (co-graphical matroids) Let G be a simple graph. Pick any orientations of all edges of G. Let F_{G} be the flow space of G, that is the space of functions on edges of the graph (flows through the edges) such that, for each vertex v, the in-flow to v equals to the out-flow from v. For an edge e of G, let f_{e} be the linear function on the flow space F_{G} that associates to any flow from F_{G} its value on the edge e. Then the f_{e} are elements of the dual space $\left(F_{G}\right)^{*}$.

Prove that the matroid given by the configuraion of vectors f_{e} in $\left(F_{G}\right)^{*}$ is dual to the graphical matroid of G.

Problem 10. (a) Prove the image of the Grassmannian $\operatorname{Gr}(k, n, \mathbb{C})$ in the projective space $\mathbb{C P}\binom{n}{k}-1$ under the Plücker embedding is the zero locus of the Plücker relations $\Delta_{i_{1} \ldots i_{k}} \Delta_{j_{1} \ldots j_{k}}=\sum \Delta_{i_{1}^{\prime} \ldots i_{k}^{\prime}} \Delta_{j_{1}^{\prime} \ldots j_{k}^{\prime}}$ for $r=1$.
(b) Let $\mathbb{C}\left[\Delta_{I}\right]$ be the polynomial ring in $\binom{n}{k}$ (independent) variables $\Delta_{I}, I \in\binom{[n]}{k}$. Let $I_{k n}=\left\langle\Delta_{i_{1} \ldots i_{k}} \Delta_{j_{1} \ldots j_{k}}-\sum \Delta_{i_{1}^{\prime} \ldots i_{k}^{\prime}} \Delta_{j_{1}^{\prime} \ldots j_{k}^{\prime}}\right\rangle$ be the ideal in $\mathbb{C}\left[\Delta_{I}\right]$ whose generators correspond to the Plücker relations (for all $r)$. Prove that $I_{k n}$ is the ideal of all polynomials in $\mathbb{C}\left[\Delta_{I}\right]$ that vanish on the image of the Grassmannian $G r(k, n, \mathbb{C})$ in the projective space $\mathbb{C P}^{\binom{n}{k}-1}$ under the Plücker embedding.

Problem 11. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ be a Young diagram that fits inside the $k \times n$ rectangle. Consider the subset S_{λ} of the Grassmannian $G r(k, n)$ over a finite field \mathbb{F}_{q} that consists of the elements that can be represented by $k \times n$ matrices A with 0 's outside the shape λ. For example, for $n=4$ and $k=2, S_{(4,1)}$ is the subset of elements of $\operatorname{Gr}(2,4)$ representable by matrices of the form $\left(\begin{array}{cccc}* & * & * & * \\ * & 0 & 0 & 0\end{array}\right)$

In parts a,b,c assume $n=2 k$ and $\lambda=(2 k, 2 k-2,2 k-4, \ldots, 2)$.
(a) Find a combinatorial expression for the number of elements of $S_{(2 k, 2 k-2, \ldots, 2)}\left(\right.$ over $\left.\mathbb{F}_{q}\right)$. Show that it is a polynomial in q.
(b) Let $f_{k}(q)$ be the polynomial from part 1 . Calculate $f_{k}(1), f_{k}(0)$, and $f_{k}(-1)$.
(c) Let $g_{k}(q)=q^{d} f_{k}\left(q^{-1}\right)$, where d is the degree of the polynomial $f_{k}(q)$. Find the maximal power of 2 that divides the number $g_{k}(5)$.
(d) Generalize (some of) the above to other Young diagrams λ.
(e) What about skew shapes λ / μ ?

Problem 12. (a) Prove that image of the Grassmannian $\operatorname{Gr}(k, n, \mathbb{C})$ under the moment map is a convex polytope.
(b) Describe the moment map image of (the closure of) the Schubert $\operatorname{cell} \overline{\Omega_{(2,1)}} \subset G r(2,4, \mathbb{C})$.
(c) Calculate the normalized volume of the moment map image of $\overline{\Omega_{\lambda}} \subset G r(k, n, \mathbb{C})$ for any λ.
Problem 13. Find an expression for the Ehrhart polynomial $i(P, t):=$ $\#\left(t P \cap \mathbb{Z}^{n}\right), t \in \mathbb{Z}_{\geq 0}$, of the hypersimplex $P=\Delta_{k n}$ using inclusionexclusion.

Problem 14. Let A be a generic upper-triangular $n \times n$ matrix. Find the number of non-zero minors of A of all sizes (including the empty minor of size 0×0).
Problem 15. Find the "birational subtraction-free bijection" $(x, y, z) \mapsto$ $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ from $\mathbb{R}_{>0}^{3}$ to itself such that

$$
\left(\begin{array}{lll}
1 & x & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & z & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & x^{\prime} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & y^{\prime} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & z^{\prime} \\
0 & 0 & 1
\end{array}\right) .
$$

(b) Find the bijective map $(x, y) \mapsto(\tilde{x}, \tilde{y})$ from $\mathbb{R}_{>0}^{2}$ to $\mathbb{R}_{>0}^{2}$ such that

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
\tilde{y} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & \tilde{x} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t_{1} & 0 \\
0 & t_{2}
\end{array}\right)
$$

for some $t_{1}, t_{2} \in \mathbb{R}_{>0}$.
Problem 16. Calculate the number of d-dimensional cells in the totally nonnegative Grassmannian $G r_{\geq 0}(2, n)$.

Problem 17. Let P be a path in any directed 3 -valent graph. Let us start erasing loops (i.e., closed directed paths without self-intersections) in P until we get a path P^{\prime} without self-intersections. Is it true that the parity of the number of erased loops is a well-defined invariant of path P and it does not depend on the order of erasing loops? (In class, we proved this for planar graphs embedded into a disk and paths P between two boundary vertices.)

