
An Introduction to Lenstra-Lenstra-Lovasz Lattice

Basis Reduction Algorithm

Xinyue Deng

77 Massachusetts Avenue

Cambridge, MA, 02139

Massachusetts Institute of Technology

Abstract

Lenstra-Lenstra-Lovasz (LLL) Algorithm is an approximation algorithm of
the shortest vector problem, which runs in polynomial time and finds an
approximation within an exponential factor of the correct answer. It is a
practical method with enough accuracy in solving integer linear program-
ming, factorizing polynomials over integers and breaking cryptosystems. In
this paper, we introduce its background and implementation, analyze its
correctness and performance and discuss its applications.

Keywords: LLL-algorithm, Lattice basis reduction

1. Introduction

A lattice is formed by all linear combinations with integer coefficients of
the subgroup of any basis in Rn, as formulated in Definition 1.1.

Definition 1.1 (Lattice). A lattice L is a discrete subgroup of H generated
by all the integer combinations of the vectors of some basis B :

L =
m∑
i=1

Zbi =

{
m∑
i=1

zibi,where zi ∈ Z,bi ∈ B

}
.

Lattices have many significant applications in mathematics, and cryp-
tography. The Shortest vector problem (SVP) is the most famous and
widely studied lattice problem, which consists in finding the shortest non-
zero vector, λ(L) in a given lattice L. The length of the vector can be
defined with any norm, but most frequently with Euclidean norm. Another

1

variant of SVP is finding the length of the shortest non-zero vector without
finding the vector.

SVP has been studied since 19th century due to its connectivity with
many problems, like integer linear programming and number theory. The
average hardness of SVP made it also an attractive topic in cryptography.
In 1910s, mathematician Minowski proved an upper bound of SVP in n-
dimensions, which is stated in Theorem 1.1.

Theorem 1.1 (Minowski’s Theorem). Any convex, centrally symmetric
body S of volume vol(S) > 2ndet(L) contains a non-zero lattice point.
det(L) is the determinant of a lattice L.

Proof. Let S ′ = S/2, and we have vol(S ′) > det(L). We claim that there
are distinct points x,y ∈ S ′, such that x − y ∈ L. To see this, we need to
introduce the definition of fundamental region.

Definition 1.2 (Foundamental Region). A set F ⊆ Rn of a lattice F if its
translation x +F = {x + y : y ∈ F}, taken over all x ∈ L, form a partition
of Rn.

Consider any fundamental region F of lattice L, S ′ can be partitioned
into sets S ′v = S ′ ∩ (v + F) for each v ∈ L. Then, the translates S ′v − v ⊆
F , and vol(S ′) > vol(F), so it means some regions must overlap. This
indicates that there must exist z ∈ (S ′v − v) ∩ (S ′u − u) for some distinct
u,v ∈ L. Therefore, we have x = z + u and y = z + v ∈ S ′, and difference
x− y = u− v ∈ L is a lattice point.

Finally, we have 2x,−2y ∈ S by the definition and central symmetry of
S and S ′. Followed by convexity, the midpoint 2x−2y

2
= x− y ∈ S.

Corollary 1.1.1. For any n-dimensional lattice L, we have the length of
shortest vector λ(L) >

√
n · det(L)1/n.

Proof. For simplicity, we assume det(L) = 1 by scaling with the factor
det(L)−1/n. Let S be a n-dimensional sphere with radius

√
n at the origin,

and S strictly contains a [−1, 1]n cube with side length 2, and volume 2n.
Therefore, we have vol(S) > 2n. With Theorem 1.1, we conclude there
is a non-zero lattice point inside S. Multiplying the scale factor, we have
λ(L) >

√
n · det(L)1/n.

However, Minowski’s theorem only gives a upper bound of SVP, but we
still have no clue on how to find the shortest vector. Finding shortest non-
zero vector in 2-dimensional lattices was solved by Gauss in the 19th century,

2

but there was not efficient algorithm of solving SVP in higher dimensions
until 1980s. In 1981, mathematician Perter van Emde Boas conjectured
that SVP is a NP-hard problem[1].

Up to date, there is no algorithm can solve SVP exactly and run ef-
ficiently, but Arjen Lenstra, Hendrik Lenstra and László Lovász posted a
well-known approximation algorithm of SVP in 1982, which can approxi-
mate a non-zero lattice vector in n-dimension lattice L of length at most
2(n−1)/2 times λ(L) in polynomial time 1. Although the approximation factor
seems too large at the first glance, it is actually better than the Minowski’s
bound, because it only depends on the number of dimensions, while Mi-
nowski’s bound depends on the determinant of lattice as well. Practically,
LLL algorithm can give a good approximation in reasonable time.

2. Basis Reduction

Basis reduction is a process of reducing the basis B of a lattice L to a
shorter basis B′ while keeping L the same. Figure 1 shows a reduced basis
in two dimensional space. Common ways to change the basis but keep the

Figure 1: A lattice with two different basis in 2 dimension. The determinant of the basis
is shaded. The right basis is reduced and orthogonal.

same lattice include:

1. Swap two vectors in the basis.

2. For a vector bi ∈ B, use −bi instead.

1The approximation factor can be reduced to (2√
3
)n if the algorithm is tuned, but it

is still exponential in n

3

3. For a vector bi ∈ B, add a linear combination of other basis vectors
to it. For any vector v in lattice, it can be expressed as

v =
m∑
i=0

zibi.

After addition, we have a new basis vector bj, where

bj = bj +
∑
i 6=j

yibi, yi ∈ Z.

We can still express lattice L with the new basis,

v =
∑
i 6=j

zibi + zj(bj +
∑
i 6=j

yibi).

Therefore, the lattice remains the same after changing the basis.

Basis reduction can help solving SVP, because if we cannot reduce a
basis anymore, the shortest basis vector should be the shortest vector of the
lattice. We start by solving the SVP in 2-dimentional case.

Definition 2.1 (Two dimensional reduced basis). A basis (b1,b2) is said
to be reduced if it satisfies following condition:

‖b1‖ ≤ ‖b2‖

u =
b1 · b2

‖b1‖2
≤ 1

2
.

u is called the orthogonal projection coefficient, and Figure 2 shows a
process of projection. Figure 2 shows the process of orthogonal projection.
Based on this definition, we have following theorems.

Theorem 2.1. Given a two dimensional lattice L with basis rank 2, if λ is
the length of the shortest vector in L, then

λ ≤

√
2√
3
det(L).

4

Figure 2: Orthogonal projection. The set {b1,b
∗
2} is the orthogonal basis for the lattice

generated by basis {b1,b2}

Proof. Suppose we have a reduced basis {b1,b2}, and its orthogonal basis
is {b1,b

∗
2}.Based on the orthogonal process, we have

b2 = b∗2 + ub1

‖b2‖2 = ‖b∗2‖2 + u2‖b1‖2

‖b∗2‖2 = ‖b2‖2 − u2‖b1‖2 ≥ ‖b1‖2 −
1

4
‖b1‖2 =

3

4
‖b1‖2

‖b∗2‖ ≥
√

3

2
‖b1‖

‖b∗2‖‖b1‖ = det(L) ≥
√

3

2
‖b1‖2

‖b1‖ ≤

√
2√
3
det(L)

λ is smaller or equal to ‖b1‖, so the theorem is proved.

Theorem 2.2. If a basis {b1,b2} is reduced, then b1 is the shortest vector.

Proof. Let x is the shortest vector in lattice L, so we have x = z1b1 + z2b2.

5

Then,

‖x‖2 = ‖z1b1 + z2b2‖2

= ‖z1b1 + z2(b
∗
2 + ub1)‖2

= (z1 + z2u)2‖b1‖2 + z22‖b∗2‖2

≥ (z1 + z2u)2‖b1‖2 + z22
3

4
‖b1‖2

= ‖b1‖2

As x is the shortest vector, it is only possible that ‖x‖2 = ‖b1‖2, so b1 is
the shortest vector.

Gauss solved SVP in 2-dimensional lattice in 19th century, and the de-
scription of his algorithm is following:

1. Start with basis {b1,b2}, if ‖b1‖ > ‖b2‖, swap b1 and b2.
2. Compute u = b1·b2

‖b1‖2 . If u > 1
2
, let m be the biggest integer that is

smaller than u, and let b2 = b2 −mb1.
3. If ‖b1‖ > ‖b2‖, then swap b1 and b2, and repeat step 2. Otherwise,

output b1.

3. Gram-Schmidt Orthogonalization

The idea of basis reduction in two dimensional lattice is to find the
orthogonal basis based on the given basis. The basis we found in Gauss
algorithm is not exactly orthogonal, but it is the nearest basis we can get.
To generalize the algorithm to n-dimensions, we need to find a way to
construct n-dimensional orthogonal basis based on the given basis, which
leads us to Gram-Schmidt Orthogonalization.

Theorem 3.1 (Gram-Schmidt Orthogonalization method). Given a basis
{b1,b2, · · · ,bm} of a subspace Hm of Rn, we define

b1
∗ = b1,

b2
∗ = b2 − u1,2b1, where u1,2 =

b2 · b1
∗

b1
∗ · b1

∗

...

bm
∗ = bm −

∑
i<m

ui,mbi, where ui,m =
bm · bi

∗

bi
∗ · bi

∗

Then, {b1
∗,b2

∗, · · · ,bm
∗} is an orthogonal basis of Hm.

6

Proof. This theorem can be proved by induction on the dimension of the
vector space.

1. For k = 1, b1
∗ = b1.

2. For k = 2: {b1
∗,b2

∗} is orthogonal, because b2
∗ is constructed by

orthogonal projection of b2 onto b1
∗. Figure 2 shows this process.

Also, b2
∗ is constructed by subtracting a linear combination of other

basis vector, so {b1
∗,b2

∗} is a basis of H2.

3. For 2 < k ≤ m:

• {b1
∗,b2

∗, · · · ,bk
∗} is orthogonal because {b1

∗,b2
∗, · · · ,bk−1

∗}
is orthogonal based on the induction hypothesis, and bk

∗ is con-
structed by orthogonal projection of bk onto every other vectors.

• bk
∗ is constructed by subtracting a linear combination of other

basis vectors, so {b1
∗,b2

∗, · · · ,bk
∗} is a basis of Hk.

Based on the Theorem 3.1, if we set um,m = 1, then we have

bm =
m∑
i=1

ui,mbi.

Therefore, we can write the above formula in matrix form, B = B∗U , where
basis vectors are columns in B and B∗. Thus, we have

U =


u1,1 u1,2 · · · u1,n
0 u2,2 · · · u2,n
...

...
. . .

...
0 0 · · · un,n

 =


1 u1,2 · · · u1,n
0 1 · · · u2,n
...

...
. . .

...
0 0 · · · 1


U is a upper trianglar matrix with 1s on the diagonal, so det(U) = 1. We
can then factoring B∗ by B∗ = QD,

D =


‖b1

∗‖
‖b2

∗‖
. . .

‖bm
∗‖


where Q is an orthogonal matrix. Thus, we have

B = QDU.
7

Lemma 3.2. For any n-dimensional lattice L with basis B, we have det(L) =
Πn

i=1bi‖.

Proof.

det(L) = det(B) = det(Q)det(D)det(U) = det(D) = Πn
i=1‖bi‖.

Lemma 3.3. For any n-dimensional lattice L with basis B, we have the
length of shortest vector λ(L) ≥ mini ‖bi

∗‖.

Proof. For any non-zero lattice vector v,

v =
k∑

i=1

zibi

=
k∑

i=1

zi

i∑
j=1

uj,ibj
∗

= zkbk
∗ +

k−1∑
j=1

k∑
i=1

ziuj,ibj
∗

Thus,

‖v‖ ≥ ‖zkbk
∗‖ ≥ ‖bk

∗‖.

4. LLL Basis Reduction

In Section 2, we have introduced a two dimensional reduced basis, and
the way to solve the SVP in two-dimension with Gauss algorithm. How-
ever, the real interesting SVP still remains unsolved in the higher dimension.
In 1997, Ajtai proved SVP is NP-hard to solve exactly under randomized
reduction [2], and later, Micciancio proved that SVP is NP-hard to ap-
proximate with any factor less than

√
2 [3]. Although the SVP is proved

unsolvable within realistic time, a good approximation of the SVP would be
useful in practical problems. By observing in the two dimensional case, we
found that in the process of reducing the basis, we want to make the basis
vectors as the most orthogonal as possible. The orthogonal basis cannot
be reduced any more. With the Gram-Schmidt orthogonalization in higher

8

dimensions, A. Lenstra, H. Lenstra, and L. Lovász proposed an approxima-
tion algorithm of basis reduction in higher dimensions in 1982 [4], which
is called LLL basis reduction algorithm. To begin with, they defined LLL
reduced basis.

Definition 4.1 (LLL reduced basis). Let {b1,b2, · · · ,bn} be a basis for
a n-dimensional Lattice L, and {b1

∗,b2
∗, · · · ,bn

∗} be the orthogonal basis
generated in Theorem 3.1, and we have ui,k = bk·bi

∗

bi
∗·bi

∗ . We say {b1,b2, · · · ,bn}
is a LLL reduced basis if it satisfies two conditions:

(1) ∀i 6= k, ui,k ≤ 1
2
,

(2) For each i, ‖bi+1
∗ + ui,i+1bi

∗‖2 ≥ 3
4
‖bi
∗‖2.

Remark. The constant 3
4

is chosen for the simplicity of the paper. Any
constant between 1

4
and 1 can guarantee that the algorithm terminates in

polynomial time.

Remark. The condition 2 emphasizes the ordering of the basis, like what we
did in two dimensional case.

Given a basis {b1,b2, · · · ,bn} in n-dimension, to get a LLL reduced
basis, the LLL algorithm works as below.

Algorithm 1: LLL Algorithm

Input: {b1,b2, · · · ,bn}
Repeat two steps until find the LLL reduced basis
Step 1: Gram-Schmidt orthogonalization
for i = 1 to n do

for k = i− 1 to 1 do
m← nearest integer of uk,i
bi ← bi −mbk

end

end
Step 2: Check Condition 2, and swap
for i = 1 to n− 1 do

if ‖bi+1
∗ + ui,i+1bi

∗‖2 < 3
4
‖bi
∗‖2 then

swap bi+1 and bi

go to step 1

end

end

9

In step 1, we computed the most orthogonal basis based on Gram-
Schmidt orthogonalization, and we check our second condition in step 2.
If any basis violates the order, we swap them and repeat step 1.

The LLL algorithm gives us an approximation within an exponential
factor of the actual shortest vector in polynomial time. First, we show that
the reduced basis produced from LLL Algorithm gives a short vector within
an exponential faction of the actual shortest vector.

Claim 4.1. If {b1,b2, · · · ,bn} is a n-dimensional LLL reduced basis of

Lattice L, then ‖b1‖ ≤ 2
n−1
2 λ(L), where λ(L) is the length of the shortest

vector of L.

Proof. Based on our definition of LLL reduced basis, we have

‖bi
∗‖2 ≤ 4

3
‖bi+1

∗ + ui,i+1bi
∗‖2

By expanding the right hand side,

=
4

3
‖bi+1

∗‖2 +
4

3
u2i,i+1‖bi

∗‖2

With ui,i+1 ≤ 1
2
, we get

≤ 4

3
‖bi+1

∗‖2 +
1

3
‖bi
∗‖2,

which gives us ‖bi+1
∗‖2 ≥ ‖bi‖2. By induction on i, we have

‖bi
∗‖2 ≥ 1

2i−1‖b1
∗‖2 =

1

2i−1‖b1‖2.

Based on Lemma 3.3, we have λ(L) ≥ mini ‖bi
∗‖. Therefore, by combining

it with inequality above, we get

‖bi‖2 ≤ min
i
{2i−1‖bi

∗‖2} ≤ 2n−1λ(L)2.

Thus, we prove the claim.

Second, we show that the LLL algorithm terminates in polynomial time
of n. Note that the step 1 takes polynomial time, and step 2 takes linear

10

time, so we need to show that we only repeat step 1 and step 2 a polynomial
number of times. To show this, we define a function:

F (b1,b2, · · · ,bn) = Πn
i=1‖bi

∗‖2.

In step 1, we do not change bi
∗, so F does not change.

In step 2, we swap bi and bi+1 only when ‖bi
∗‖2 > 4

3
‖bi+1

∗+ui,i+1bi
∗‖2 ≥

4
3
‖bi+1

∗‖2. By swapping, we reduce F by at lease a factor of 2√
3
.

Let ‖bmax‖ = maxi ‖bi‖,∀i, we get an upper bound of F , which is
‖bmax‖n(n−1)/2. Thus, we can only decrease F log2/

√
3(‖bmax‖n(n−1)/2) times,

which is in polynomial time of n.

5. Conclusion

In this paper, we introduced an algorithm, LLL basis reduction algo-
rithm, for approximating the shortest vector in higher dimensional space in
polynomial time. Although the algorithm was developed in early 1980s, it
still has various applications in number theory, integer programming and
cryptography because of its performance and accuracy. The appearance of
LLL algorithm inspired new development of cryptography since the existing
encryption systems can be easily broken by LLL algorithm. Also, it is a
fundamental algorithm for solving lattice problems.

References

[1] P. van Emde Boas, Another np-complete problem and the complexity of computing
short vectors in a lattice, Technical Report 81 (04).

[2] M. Ajtai, The shortest vector problem in l2 is np-hard for randomized reductions
(extended abstract), Proceedings of the thirties Annial ACM Symposium on Theory
of Computing -STOC (1998) 10–19.

[3] D. Micciancio, The shortest vector problem is NP-hard to approximate to within
some constant, SIAM Journal on Computing 30 (6) (2001) 2008–2035, preliminary
version in FOCS 1998. doi:10.1137/S0097539700373039.

[4] A. K. Lenstra, H. W. Lenstra, L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261 (4) (1982) 515–534. doi:10.1007/BF01457454.
URL http://dx.doi.org/10.1007/BF01457454

11

