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Abstract. In this paper we explore the friendship theorem, which
in graph theory is stated as if we have a finite graph in which any
two nodes have exactly one common neighbor, then Then there is
a node which is adjacent to all other nodes. We provide a com-
mon proof of the friendship theorem, followed by two extensions.
The first extension relates to the number of common neighbors a
node must have. The second relaxes the friendship condition such
that any two nodes can have no common neighbor or one common
neighbor.

1. Introduction

The Friendship Theorem has long been explored through graph the-
ory, and its origins are not known. The Friendship Theorem can be
stated as follows:

Theorem 1.1. Suppose in a group of people we have the situation that
any pair of persons has precisely one common friend. Then there is
always a person (the “politician”) who is everybody’s friend.

In such a situation, there is always one person who is everyone’s
friend. We will see throughout this paper that the Friendship Theorem
can be explored with graph theory in order to provide valuable insights
to a variety of graphs of different diameter. We will summarize a
simple proof of the friendship theorem as well as a purely combinatorial
proof proposed by Mertzios and Unger in 2008, and a relaxation of the
problem and further conclusions discussed by Skala in 1972.

The friendship theorem is commonly translated into a theorem in
graph theory:

Theorem 1.2. Suppose that G is a finite graph in which any two ver-
tices have precisely one common neighbor. Then there is a vertex which
is adjacent to all other vertices. [1,2]

An example of a graph adhering to the properties defined in this
problem can be seen in figure 1. The friendship condition can be re-
stated as “For any pair of nodes, there is exactly one path of length
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Figure 1. A windmill graph with politician u

two between them”. [4]
In addition to these common expressions of the Friendship The-

orem, we will discuss an extension of the Friendship Theorem which
works off of the set theory translation of the theorem:

Theorem 1.3. A friendship set is a finite set with a symmetric non-
reflexive binary relation, called on, satisfying: (i) if a is not on b, then
there exists a unique element which is on both a and b; (ii) if a is on
b, then there exists at most one element which is on both a and b. [5]

2. A Proof of the Friendship Theorem

In this section, we will show a traditional proof of the Friendship
Theorem thought to be first published by Paul Erdos, Alfred Renyi,
and Vera Sos. We begin with a discussion of some simple properties
which we will refer to throughout the paper, then move into the proof.

Proposition 2.1. A friendship graph G adheres to the C4-condition,
that is, it contains no cycle on four nodes. Moreover, the distance
between any two nodes in G is at most two.

Proof. Suppose G includes C4 as a subgraph. There are two nodes v and
u which have at least two common neighbors, as two opposite vertices
would in a square. This is in contradiction to the friendship condition.
The distance between two nodes must be at most two, because if it is
greater than two then they do not have any “friends” in common, also
violating the friendship condition. �

We will prove Theorem 1.2 (and thus the other translations of the
Friendship Theorem) by contradiction, supposing it is false for some
graph G. This means that there is no vertex of G that is adjacent to
all other vertices.

Proof. Suppose we have a graph G that fits the friendship condition. G
must be a regular graph, so that the degree of each vertex is equal. We
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will prove this combinatorially. Any two nonadjacent vertices u and v
must have equal degree d(u) = d(v).

Suppose d(u) = k and w1, ...wk are adjacent to u. One of these
adjacent vertices, say w2 must also be adjacent to v in order to satisfy
the conditions of the Friendship Theorem. In addition w2 must be
adjacent to one other vertex in w1, ...wk, say w1. Thus, v must be
adjacent to some other vertex in common with w2 in order to satisfy
the theorem and the C4 − condition. For all wi adjacent to u except
w1, v must have a common neighbor and this neighbor must be distinct
in order to avoid a cycle of length 4. Thus, d(v) ≥ k = d(u), and by
symmetry d(u) = d(v) = k.

We have constructed the graph such that w1 is the only shared
neighbor of u and v, so any other vertex is adjacent to at most one of
u and v, and the degrees of all verticies are equal, and equal to k.

The total number of vertices can be counted now that we know the
degree of each vertex is k. We count the degree of each wi adjacent to
u to obtain k2, then subtract k − 1 as we have counted u a total of k
times. This gives us the number of vertices n = k2 − k + 1.

We continue the proof with applications of linear algebra to arrive at
a contradiction. At this point we can conclude that k must be greater
than 2 as k ≤ 2 yields trivial windmill graphs, and we are looking to
prove that there are graphs apart from windmill graphs that satisfy the
friendship condition.

Consider an adjacency matrix A. This matrix will have k one’s in
any row as the degree of each vertex is k. By the friendship condition,
any two rows have one column where they both have a one. Therefore,
A2 will have k’s down the diagonal and 1’s everywhere else. To find the
eigenvalues of A2 we write A2 = J + (k − 1)I. From this equation we
see that the eigenvalues of A2 are n+ k− 1 = k2 and k− 1. Therefore,
the eigenvalues of A of k and ±

√
k − 1. We know the multiplicity of k

is 1, and suppose that the other eigenvalues have multiplicity r and s
such that r + s = n− 1.

From the eigenvalues and the trace of A, which is equal to 0, we
obtain the equation

k + r
√
k − 1− s

√
k − 1 = 0

which allows us to see that r 6= s as k 6= 0. Factoring and squaring this
equation yields

(r − s)2(k − 1) = k2

Thus (k − 1) divides k2, which is only true for k = 2. Here we find
our contradiction, as the first part of the proof concluded that k > 2.
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Thus, our graph must be a windmill graph with one vertex of degree
n− 1 in order to satisfy the friendship condition. �

3. The Generalized Friendship Problem

As stated previously, we can rewrite the friendship problem in order
to address the diameter of a graph as “For every pair of nodes, there
is exactly one path of length two between them.” We can generalize
this problem to be variable on number of paths between nodes and the
length of said paths to achieve some interesting results. We call graphs
with path length k and number of paths between nodes l l-regularly k-
path connected graphs, or simply Pl(k)-graphs. The friendship theorem
we have proved in section 2 relates to P1(2)-graphs. [4]

3.1. Kotzig’s Conjecture. One may wonder what happens when we
alter k, the length of paths in a graph, while keeping l = 1, so that
between any pair of nodes, there is one path of length k between them.
In 1974, Kotzig conjectured that there exists no P1(k)-graphs where
k > 2. He was able to prove this for k ≤ 8 by using statements on even
cycles, and more cases have been proven up through k ≤ 33, however
a general proof for all cases of k has not yet been formulated.[1]

3.2. L-Friendship Graphs. We now generalize on l, keeping a path
length of 2, calling these graphs l-friendship graphs or Pl(2)-graphs.
These graphs satisfy the condition that every pair of nodes has exactly
l common neighbors. [4]

Lemma 3.1. Every l-friendship graph G is a regular graph for l ≥ 2

Proof. We have graph G with set of vertices V . Consider a node v
with degree d, and denote L as the subgraph of G consisting of the
neighbors of v, and L′ as the subgraph of G consisting of all V L, v. It
follows that every node in L′ has distance 2 from v. Consider a second
node a ∈ L. This node has l neighbors in common with v, and thus l
neighbors in L.
Case 1: L′ = ∅. In this case, a has l neighbors in L, plus v as a neighbor,
and therefore degree l+1. This is true for all of a’s neighbors, a1, a2, ...al
as well. We know that v has degree of at least l + 1 to account for a
and a’s l neighbors. If d > l + 1, L must contain some other node b.
b would have no neighbors in common with any a, a1, a2, ...al as this
would violate the condition that each ai has l neighbors in l. Thus the
pair a, b would have only one node in common, v, which violates the
l-friendship condition. Therefore, b cannot exists and all nodes in L
have degree l + 1. As V = L ∪ v, all nodes in V have degree l + 1 and
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G is a regular graph.
Case 2: L′ 6= ∅. Now, every node x ∈ L′ has l neighbors in L so that
v and x have l common neighbors. For some a ∈ L, there are (d − 1)
nodes b ∈ L that are not a, and pairs a, b have l common neighbors,
so there must be (d− 1)l paths from a to any extreme node b ∈ L. Of
these paths, d − 1 go through v, and l(l − 1) go through nodes in L.
We derive from this that (d− l−1)(l−1) of the paths go through some
node in L′.

We now consider c ∈ L′ that is a neighbor of a, which must be an
intermediate node in l− 1 paths of length 2 from a to some node b ∈ L
as x has l − 1 neighbors in L that are not a. It follows that a has

(d− l − 1)(l − 1)

(l − 1)
= (d− l − 1)

neighbors in L′. We can now conclude that any node in L has

1 + l + (d− l − 1) = d

neighbors. Next we must prove the same for each vertex in L′, and
we do this by showing that we can select any node as v to create any
subsets L and L′ which have the same properties as those we have
discussed. We obtain the equation

|L′| = d(d− l − 1)

l

from the fact |L| = d and each node in L has (d− l − 1) neighbors in
L′ and each node in L′ has l neighbors in L. It follows that

|V | = |L|+ |L′|+ 1 =
d(d− 1)

l
+ 1

This will hold for any v ∈ V of degree d, so G must be a d-regular
graph. �

4. A Relaxation of Friendship

In this section, we will discuss a relaxation of the conditions of the
traditional problem suggested by H.K. Skala. Recall Theorem 1.3,
which offers a translation of the problem into sets with the “on” rela-
tion, which we will refer to as θ. For clarity, a on b will be written as
aθb and a not on b will be written as aθ′b. We will relax the friendship
condition discussed throughout this paper so that two friends do not
need a common friend. In the set representation of a relaxed friendship,
friendship set A satisfies the following conditions:

(1) aθ′a, ∀a ∈ A
(2) if aθ′b, ∃c ∈ A such that aθc and bθc
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Figure 2. A graph representation of an nontrivial
friendship set

(3) if aθb, there exists at most one c such that aθc and bθc

A friendship set A is nontrivial if there is no politician, or if it does
not satisfy the conditions presented by the strict friendship condition
referenced in Section 1. Skala also discusses in his extension the concept
of a P -element. In particular, an element a ∈ A is a P -element in aθx
for all elements x ∈ A, x 6= a. A nontrivial friendship set would have
no P -elements. Figure 2 an example of a nontrivial friendship set.
Similarly, an element in a friendship set is called a k-element if it is on
exactly k other elements.

Lemma 4.1. Every element of a nontrivial friendship set is on at least
two distinct elements.

Proof. The fact that each element is on at least one element is trivial by
the definition of the friendship set. Assume for the sake of contradiction
that some element a in a nontrivial friendship set A is on only one
element b. There must exist other elements in the set, and they must
have an element in common with a by (2). However, this would make
b a P -element, contradicting the notion that A is nontrivial. �

Lemma 4.2. If a and b are in a nontrivial friendship set A and aθb,
then there exists x in A such that aθ′x and bθ′x.

Proof. Suppose for the sake of contradiction that there exists x such
that x is on either a or b. To avoid an element being a P -element,
there must be at least two other elements in A, call them c and d, such
that cθ′a and dθ′b. We know that cθ′d by the C4-condition. Elements
c and d must have a different common element e, either on a or b,
but e cannot be on a or b by the C4-condition, so we have reached a
contradiction. �



7

Skala’s paper continues with fairly complex proofs of the following
lemma and theorem through both combinatorics and linear algebra.

Lemma 4.3. Let a and b be k1- and k2-elements of a nontrivial friend-
ship set A and suppose k1 ≥ k2. If aθ′b then k1 = k2 − 1 or k1 = k2;
moreover, if k1 = k2 − 1, then there is an element on bot a and the
common element between a and b. If aθb and there exists an element
on both a and b, then k1 = k2. [5]

Theorem 4.4. If A is a finite nontrivial friendship set, then there
exists an integer m such that every element is an m- or an (m − 1)-
element. [5]

Theorem 4.5. If m is the degree of a homogeneous friendship set A,
then A contains m2 + 1 elements; m can be only 2, 3, 7 or 57. [5]

This is an interesting result that, when thought about in terms of the
graphical representation of Skala’s friendship sets, shows a fundamental
difference between his generalization of the friendship condition and
the generalization in section 3. In particular, for l-friendship graphs
must be regular graphs, whereas Skala’s sets can only be represented
by regular graphs if the degree of each node is 2, 3, 7, or 57.

5. Conclusions

In this paper we provide a proof of the friendship theorem as well as
two extensions on the theorem and a discussion of Kotzig’s conjecture in
relation to the friendship theorem. There are certainly other problems
left open, such as the generalization of Pl(k)-graphs as a class with
variation on both l and k.
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