Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1)

Travis Schedler
Thurs, Nov 17, 2011 (version: Thurs, Nov 17, 1:00 PM)

Goals (2)

• Polar decomposition and singular value decomposition
• Generalized eigenspaces and the decomposition theorem

Read Chapter 7, begin Chapter 8, and do PS 9.

Warm-up exercise (3)

(a) Let T be an invertible operator on a f.d. i.p.s. and set $P := \sqrt{T^*T}$ and $S := TP^{-1}$. Show that S is an isometry. Recall P is positive, so

$$T = SP$$

is a polar decomposition (i.e., S is an isometry and P positive).

(b) Now suppose $T = 0$. Show that polar decompositions $T = SP$ are exactly

$$T = S0$$

for every isometry S, i.e., we have always $P = 0$ but S can be anything.

One-dimensional analogue: Either $z \in \mathbb{C}$ is invertible, in which case $z = (z/|z||z| = sp$ or else z is zero, in which case $z = s \cdot 0$ for any s of absolute value one.

Solution to warm-up exercise (4)

(a) $S^*S = (TP^{-1})^*TP^{-1} = (P^{-1})^*TP^{-1} = P^{-1}P^2P^{-1} = I$. Here we used that $P^* = P$ and hence $(P^{-1})^* = P^{-1}$ as well.

(b) Since isometries are invertible, $0 = SP$ for S an isometry implies $P = S^{-1}0 = 0$. On the other hand clearly $S0 = 0$ for all S.

1
Polar decomposition and SVD (5)

Proposition: every complex number \(z \) is expressible as \(z = r \cdot e^{i\theta} \), where \(r \geq 0 \) and \(\theta \in [0, 2\pi) \). (Unique if \(z \) nonzero). Equivalently: \(z = s \cdot r \), for \(|s| = 1 \) and \(r = |z| = \sqrt{z \cdot \bar{z}} \geq 0 \).

Theorem 1. Let \(V \) be a f.d. i.p.s. and \(T \in \mathcal{L}(V) \). Then there is an expression \(T = SP \), for \(S \) an isometry and \(P \) positive. \(P \) is unique and \(P = \sqrt{T^*T} \). Moreover, \(S \) is unique if \(T \) is invertible.

Corollary 2 (Singular Value Decomposition (SVD)). There exists orthonormal bases \((e_1, \ldots, e_n)\) and \((f_1, \ldots, f_n)\) of \(V \) such that \(Te_i = s_i f_i \), for \(s_i \geq 0 \) the singular values. Moreover, \((e_1, \ldots, e_n)\) is an orthonormal eigenbasis of \(T^*T \) with eigenvalues \(s_i^2 \).

Proof: Let \((e_1, \ldots, e_n)\) be an orthonormal eigenbasis of \(T^*T \) and \(s_1, \ldots, s_n \) the square roots of the eigenvalues. When \(s_i \neq 0 \), set \(f_i := s_i^{-1}Te_i \). Then extend the resulting \(f_i \) to an orthonormal eigenbasis.

Uniqueness of polar decomposition (6)

• If \(T = SP \), then \(T^*T = P^*S^*SP = P^*P = P^2 \), so \(P = \sqrt{T^*T} \). Thus \(P \) is unique (positive operators have unique positive square roots; see the slides for Lecture 18 or Axler).

• If \(T \) is invertible, \(S = TP^{-1} \) so \(S \) is unique.

• Conversely, if \(T \) is not invertible, neither is \(P \), and we can replace \(S \) by \(SS' \) where \(S' \) is an isometry such that \(S'v = v \) for all eigenvectors \(v \) of nonzero eigenvalue. So then \(S \) is not unique.

Existence of polar decomposition (7)

• Set \(P := \sqrt{T^*T} \).

• range(\(P \)) is \(P \)-invariant and \(P \) is an isomorphism there (it has an eigenbasis with nonzero eigenvalues). Define thus \(P|_{\text{range}(P)}^{-1} : \text{range}(P) \rightarrow \text{range}(P) \). Consider \(S_1 := TP|_{\text{range}(P)}^{-1} : \text{range}(P) \rightarrow \text{range}(T) \). \(S_1^*S_1 = I \), so \(\langle u, v \rangle = \langle S_1u, S_1v \rangle \) for all \(u, v \in \text{range}(P) \).

• Recall: null(\(P \)) = null(\(T \)). So \(\dim \text{range}(P) = \dim \text{range}(T) \). Thus \(S_1 \) takes an on. basis \((e_1, \ldots, e_m)\) of \(\text{range}(P) \) to an on. basis \((f_1, \ldots, f_m)\) of \(\text{range}(T) \).

• Extend \((e_i)\) and \((f_i)\) to on. bases of \(V \) and extend \(S_1 \) to \(S \in \mathcal{L}(V) \) by \(S(e_i) = f_i \) when \(i > m \).

• So \(S \) takes an on. basis to another on. basis, i.e., it is an isometry.

• Finally, \(T = SP \), since it is true on \(\text{range}(P) \) and \(\text{null}(T) = \text{null}(P) = \text{range}(P)^\perp = \text{Span}(e_{m+1}, \ldots, e_n) \).
Nonuniqueness of SVD (8)

- Note: the SVD is not unique, even if T is invertible: the orthonormal eigenbasis (e_i) of T^*T is not unique. (e.g., one can reorder them and multiply by ± 1, at the least.)

- On the other hand, the polar decomposition is unique iff T is invertible.

- Example: $T = T_A, A = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$.

- We can guess that $A = SP = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. So this is the answer (unique since A, equivalently P, is invertible).

- For SVD we could have $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, s_1 = 1, s_2 = 2$, $f_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, f_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$.

- But we could also swap everything: s_1 with s_2, e_1 with e_2, and f_1 with f_2. Or we could take e_1 to $-e_1$ (hence f_1 to $-f_1$) and/or e_2 to $-e_2$ (hence f_2 to $-f_2$).

Computing SVD and polar decomposition (9)

- The best way to compute these is to do SVD first; then let P be the operator with eigenvectors (e_i) and eigenvalues (s_i), and let S be the isometry $Se_i = f_i$ for all i.

- To compute SVD, given T, compute first T^*T.

- Then find the eigenvalues of T^*T (2×2 case: characteristic polynomial: for $A = \mathcal{M}(T)$ in an orthonormal basis, these are the roots of $x^2 - \text{tr}(A^tA)x + \det(A^tA)$.)

- Find the eigenspaces and an orthonormal basis (e_i) of T^*T.

- Next, set $P := \sqrt{T^*T}$, by taking the nonnegative square root of the eigenvalues. These eigenvalues are the s_i.

- Finally, let $f_i := s_i^{-1}Te_i$ for the nonzero s_i; for the remaining f_i just extend the ones we get to an orthonormal basis.

Example (10)

- Example from before: $A = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$.

3
• First, \(A^t A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \).

• Next, an eigenbasis is \(e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \) with eigenvalues 1 and 4.

• So \(P = \sqrt{A^t A} \) has the same eigenbasis, with eigenvalues \(s_1 = \sqrt{1} = 1 \) and \(s_2 = \sqrt{4} = 2 \).

• Then \(f_1 = s_1^{-1} A e_1 = 1^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \). Also \(f_2 = s_2^{-1} A e_2 = 2^{-1} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \).

• Now \(P = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \) and \(S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), as desired.

• In general: \(P = (e_1 e_2) \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} (e_1 e_2)^{-1} \) and \(S = (f_1 f_2)(e_1 e_2)^{-1} \).

Generalized eigenvectors (11)

Goal: Although not all f.d. vector spaces admit an eigenbasis, over \(F = \mathbb{C} \) they always admit a basis of *generalized eigenvectors*.

Definition 3. A generalized eigenvector \(v \) of \(T \) eigenvalue \(\lambda \) is one such that, for some \(m \geq 1 \), \((T - \lambda I)^m v = 0\).

Examples:

• \(m = 1 \) above if and only if \(v \) is an (ordinary) eigenvector.

• If \(T \) is nilpotent, then all vectors are generalized eigenvectors of eigenvalue zero. So, even though it does not have an eigenbasis, every basis is a basis of generalized eigenvectors!

Definition 4. Let \(V(\lambda) \) be the *generalized eigenspace* of eigenvalue \(\lambda \): the span of all generalized eigenvectors of eigenvalue \(\lambda \).

Note that \(V(\lambda) \) is \(T \)-invariant, since \((T - \lambda I)^m v = 0\) implies \((T - \lambda I)^m T v = T(T - \lambda I)^m v = 0\).

The decomposition theorem (12)

Theorem 5. Let \(V \) be f.d., \(F = \mathbb{C} \), and \(T \in \mathcal{L}(V) \). Then \(V \) is the direct sum of its generalized eigenspaces: \(V = \bigoplus \lambda V(\lambda) \).

First step:

Lemma 6. Suppose that \(\lambda \neq \mu \). Then \(V(\lambda) \cap V(\mu) = \{0\} \).
Theorem 9. Let $\lambda \in \mathbb{C}$ be an eigenvalue of T. Then T is the direct sum of its generalized eigenspaces: $V = \bigoplus_{\lambda \in \mathbb{C}} V(\lambda)$.

Proof. By induction on $\dim V$. Let λ be an eigenvalue of T, so $V(\lambda) \neq \{0\}$.

Write $V = V(\lambda) \oplus \text{range}(T - \lambda I)^{\dim V}$. Since $\dim \text{range}(T - \lambda I)^{\dim V} < \dim V$, the induction hypothesis shows that $\text{range}(T - \lambda I)^{\dim V}$ is the direct sum of the generalized eigenspaces of $T|_{\text{range}(T - \lambda I)^{\dim V}}$.

Lemma 7. $V(\lambda) = \text{null}(T - \lambda I)^{\dim V}$.

I.e., if v is a generalized eigenvector of eigenvalue λ, we can take $m = \dim V$ before: $(T - \lambda I)^{\dim V} v = 0$.

Proof. Let $U_i := (T - \lambda I)^{i}V(\lambda)$.

- Since $V(\lambda)$ is T-invariant (hence $(T - \lambda I)$-invariant), $U_0 \supseteq U_1 \supseteq \cdots$.
- However, if $U_i = U_{i+1}$, then $(T - \lambda I)$ is injective on U_i. Since $(T - \lambda I)$ is nilpotent, this implies $U_i = \{0\}$.
- So $U_0 \supseteq U_1 \supseteq \cdots \supseteq U_m = \{0\}$, and $\dim U_i \leq \dim V(\lambda) - i$. Hence $m \leq \dim V(\lambda) \leq \dim V$, and $(T - \lambda I)^{\dim V} v = 0$ for all $v \in V(\lambda)$.

One more lemma (14)

Lemma 8. $V = (T - \lambda I)^{\dim V} \oplus \text{range}(T - \lambda I)^{\dim V} = V(\lambda) \oplus \text{range}(T - \lambda I)^{\dim V}$.

Proof. Since the dimensions are equal, we need to show just that $(T - \lambda I)^{\dim V} \cap \text{range}(T - \lambda I)^{\dim V} = \{0\}$.

- Let $v \in (T - \lambda I)^{\dim V} \cap \text{range}(T - \lambda I)^{\dim V}$. Write $v = (T - \lambda I)^{\dim V} u$.
- Since $(T - \lambda I)^{2 \dim V} u = (T - \lambda I)^{\dim V} v = 0$, also u is a generalized eigenvector of eigenvalue λ.
- But, by the last lemma, then $(T - \lambda I)^{\dim V} u = 0$, so $v = 0$.

Proof of the decomposition theorem (15)

Theorem 9. Let V be f.d., $F = \mathbb{C}$, and $T \in \mathcal{L}(V)$. Then V is the direct sum of its generalized eigenspaces: $V = \bigoplus_{\lambda \in \mathbb{C}} V(\lambda)$.

- Proof: By induction on $\dim V$. Let λ be an eigenvalue of T, so $V(\lambda) \neq \{0\}$.

Write $V = V(\lambda) \oplus \text{range}(T - \lambda I)^{\dim V}$. Since $\dim \text{range}(T - \lambda I)^{\dim V} < \dim V$, the induction hypothesis shows that $\text{range}(T - \lambda I)^{\dim V}$ is the direct sum of the generalized eigenspaces of $T|_{\text{range}(T - \lambda I)^{\dim V}}$.

5
To conclude, we claim that for \(\mu \neq \lambda \), \(V(\mu) \subseteq \text{range}(T - \lambda I)^{\text{dim} V} \). Thus \(V(\mu) \) is a generalized eigenspace of \(T|_{\text{range}(T - \lambda I)^{\text{dim} V}} \).

For this, we show that \((T - \lambda I)^{\text{dim} V} V(\mu) = V(\mu) \).

First, \(V(\mu) \) is \(T \)-invariant, so \((T - \lambda I)^{\text{dim} V} V(\mu) \subseteq V(\mu) \). We only need to show \((T - \lambda I)^{\text{dim} V} \) is injective on \(V(\mu) \).

This means that \(V(\mu) \cap \text{null}(T - \lambda I)^{\text{dim} V} = \{0\} \). But this is \(V(\mu) \cap V(\lambda) = \{0\} \), by the lemmas.