Lecture 23: Trace and determinants! (1) (Final lecture)

Travis Schedler

Thurs, Dec 9, 2010 (version: Monday, Dec 13, 3:52 PM)

Goals (2)

• Recall \(\chi_T(x) = (x-\lambda_1) \cdots (x-\lambda_n) = x^n - \text{tr}(T)x^{n-1} + \cdots + (-1)^n \det(T). \)

• \(\text{tr}(T) = \) sum of eigenvalues. Theorem: equals sum of diagonal entries of \(M(T), \) independent of basis.

• Deduce: \(\text{tr}(S+T) = \text{tr}(S) + \text{tr}(T). \)

• \(\det(T) = \) product of eigenvalues. Theorem: equals a unique sum formula on \(M(T) \) using sign of permutations.

• Real case: Volume of \(T(R) = |\det(T)| \) times volume of \(R. \)

• Theorem: \(\det(ST) = \det(S) \det(T). \)

• Define \(\chi_T(x) := \det(xI - M(T)) \) for general \(F, \) independent of basis.

• Formula for \(A^{-1} \) using \(\det(A); \) Cayley-Hamilton theorem.

Trace (3)

Definition 1. For a matrix \(A = (a_{ij}) \) over an arbitrary \(F, \) define \(\text{tr}(A) := a_{11} + \cdots + a_{nn}. \)

It is immediate that \(\text{tr}(A+B) = \text{tr}(A) + \text{tr}(B). \)

Theorem 2 (Corollary 10.10). *For all \(T \in \mathcal{L}(V), \) \(\text{tr}(M(T)) \) does not depend on the basis.*

• For \(F = \mathbb{C}, \) deduce: \(\text{tr}(M(T)) = \lambda_1 + \cdots + \lambda_n = \text{tr}(T). \)

• For general \(F, \) define \(\text{tr}(T) := \text{tr}(M(T)). \)

• Immediate: \(\text{tr}(S+T) = \text{tr}(S) + \text{tr}(T). \)

Lemma 3 (Proposition 10.9). \(\text{tr}(AB) = \text{tr}(BA). \)
The theorem follows immediately from the lemma and the change-of-basis formula: \(\text{tr}(SAS^{-1}) = \text{tr}(S^{-1}SA) = \text{tr}(A) \).

Proof of Lemma. \(\text{tr}(AB) = \sum_{i,j} a_{ij}b_{ji} = \sum_{i,j} b_{ji}a_{ij} = \text{tr}(BA). \) \(\square \)

Determinant and volume (4)

Properties of \(\det(T) = \lambda_1 \cdots \lambda_n \):

- \(\det(T) \neq 0 \) iff \(T \) is invertible.
- Let \(F = \mathbb{R} \). Theorem 10.38: \(\text{vol}(T(R)) = |\det(T)| \text{vol}(R). \)
- Suppose \(T \) is self-adjoint. Then, \(T \) dilates in orthogonal directions by \(\lambda_1, \ldots, \lambda_n. \) Taking these as axes, we deduce: for any region \(R, \text{vol}(T(R)) = |\det(T)| \text{vol}(R). \)
- For general \(T \), write \(T = S\sqrt{T^*T} \) where \(S \) is an isometry.
- By det theorem, \(\det(T) = \det(S) \det(\sqrt{T^*T}). \)
- Since \(S \) preserves volume, \(\text{vol}(T(R)) = \text{vol}(\sqrt{T^*T}(R)). \) But \(\sqrt{T^*T} \) is positive (\(\Rightarrow \) self-adjoint)!
- \(\text{vol}(T(R)) = \det(\sqrt{T^*T}) \text{vol}(R) = \det(S^{-1}) \det(T) \text{vol}(R). \)
- Finally, \(\det(S^{-1}) = \pm 1 \) since \(S^{-1} \) is an isometry (its block diagonal matrix has \(\pm 1 \) and rotation matrices as blocks).
- So \(\text{vol}(T(R)) = |\det(T)| \text{vol}(R). \)

Determinant and alternating forms (5)

The determinant has the following essential properties:

- **Multiadditivity:** Let \(A \) and \(B \) be matrices that differ only in a fixed column. Let \(C \) be the matrix which is also the same as \(A \) and \(B \) except in this column, which is the sum of the columns appearing in \(A \) and \(B \). Then, \(\det(C) = \det(A) + \det(B). \)
 - Interpretation: For \(R = \) standard cube (coords 0 and 1), then \(C(R), A(R), \) and \(B(R) \) are parallelepipeds sharing a common base; the height of \(C(R) \) is the sum of the heights of \(A(R) \) and \(B(R) \).
- **Multihomogeneity:** Let \(B \) be obtained from \(A \) by multiplying a column by \(\lambda. \) Then \(\det(B) = \lambda \det(A). \)
 - Interpretation: As before, \(B(R) \) has the same base as \(A(R) \) and \(\lambda \) times the height.
- **Alternation:** Let \(A \) be a matrix with two identical columns. Then \(\det(A) = 0. \)
\(- A(R) \) is degenerate, so \(\text{vol}(A(R)) = 0 \). Alternatively, \(A \) is noninvertible \(\Rightarrow \det(A) = 0 \).

- **Theorem:** Our sum formula for determinant is the unique function with these properties, up to scaling.

Theorem: \(\det(AB) = \det(A) \det(B) \) \((6)\)

- Assume \(\det \) is the unique function with the above properties up to scaling; scale it so that \(\det(I) = 1 \).
- Let \(A \) be a fixed matrix. Define \(F_A(B) := \det(AB) \).
- Claim: \(F_A \) also has the above properties!
- Consequence: There exists \(\alpha \) such that \(\det(AB) = \alpha \det(B) \) for all \(B \).
- Plug in \(B = I \). Then \(\det(A) = \alpha \det(I) = \alpha \). So, \(\det(AB) = \det(A) \det(B) \)!
- Proof of claim: \(A \) is linear, so \(\det(A(v_1 \cdots v_n)) = \det(Av_1 \cdots Av_n) \) and column operations on \(v_1, \ldots, v_n \) become the same operations on \((Av_1, \ldots, Av_n) \).
- Corollary: \(\det(AB) = \det(BA) \). Also, \(\det(SAS^{-1}) = \det(S^{-1}SA) = \det(A) \).
- So \(\det(T) := \det(\mathcal{M}(T)) \) makes sense (independent of basis)!
- So does \(\chi_T := \det(xI - \mathcal{M}(T)) \)!

Proof of uniqueness theorem (7)

- Let \(\dim V = n \) and suppose that \(F : V^n \to \mathbb{F} \) satisfies multilinearity (=multiadditivity+multihomogeneity) and alternation.
- Remark: Alternation implies skew-symmetry: \(0 = F(u + v, u + v) - F(u, u) - F(v, v) = F(u, v) + F(v, u) \).
- Let \(v_1, \ldots, v_n \) be a basis of \(V \). Claim: \(F \) is uniquely determined by \(c := F(v_1, \ldots, v_n) \).
- Suppose \(w_j = \sum_i a_{i,j} v_i \). Then \(F(w_1, \ldots, w_n) = \sum_{\sigma : \{1, \ldots, n\} \to\{1, \ldots, n\}} F(a_{\sigma(1),1} v_{\sigma(1)}, \ldots, a_{\sigma(n),n} v_{\sigma(n)}) = \sum_{\sigma} a_{\sigma(1),1} \cdots a_{\sigma(n),n} F(v_{\sigma(1)}, \ldots, v_{\sigma(n)}) \).
- Unless \(\sigma \) is a bijection, i.e., \(\sigma \in S_n := \text{permutations of } \{1, \ldots, n\} \), then two of these entries are equal so we get zero.
- By skew-symmetry, \(F(v_{\sigma(1)}, \ldots, v_{\sigma(n)}) = (-1)^k c \) where \(k \) is the number of swaps of entries needed to reorder \((v_{\sigma(1)}, \ldots, v_{\sigma(n)}) \) to \((v_1, \ldots, v_n) \).
- We get uniqueness!
Existence and formula for determinant (8)

- Set \(F(v_{\sigma(1)}, \ldots, v_{\sigma(n)}) = \text{sign}(\sigma)c \). We need sign(\(\sigma \)) = \(\pm 1 \) to be 1 if \(\sigma \) requires an even number of swaps and \(-1\) if it requires an odd number of swaps.

- If such a sign exists, then sign(\(\sigma \circ \tau \)) = sign(\(\sigma \)) sign(\(\tau \)) automatically. This is the essence of determinant: a multiplicative function on permutation matrices!

- Existence: define sign(\(\sigma \)) = \((-1)^{o(\sigma)}\), where \(o(\sigma) = \left| \left\{ (i, j) : i < j \text{ and } \sigma(i) > \sigma(j) \right\} \right| \).

- Lemma: If we swap adjacent entries of \((\sigma(1), \ldots, \sigma(n))\), then \(o(\sigma) \) goes up or down by one. So it changes parity (even to odd or vice-versa).

- Now if we swap entries \(i \) and \(j \), this takes \(2|j - i| - 1 \) adjacent swaps, so \(o(\sigma) \) still changes parity!

- We deduce that \((-1)^{o(\sigma)} = (-1)^k\) for any sequence of \(k \) swaps which equals \(\sigma \). This proves existence!

Matrix formula for determinant (9)

- Fix a basis \(v_1, \ldots, v_n \) and let \(\text{det} \) be the unique multilinear alternating function so that \(\text{det}(v_1, \ldots, v_n) = 1 \).

- Given any \(T \in \mathcal{L}(V) \), define \(\text{det}(T) = \text{det}(w_1, \ldots, w_n) \) where \(T(v_i) = w_i \).

- Write \(A = M(v_j)(T) = (a_{i,j}) \). So \(w_j = \sum_i a_{i,j}v_i \).

- By our computation, \(\text{det}(T) = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{\sigma(1),1} \cdots a_{\sigma(n),n} \).

- Finally, for an upper triangular matrix, \(\text{det}(A) = \text{the product of the diagonal entries} \). So for \(F = C \), \(\text{det}(T) = \text{the product of the eigenvalues} \)!

Computing the determinant (and \(\chi_A(x) \)) (10)

- Gaussian elimination: to compute \(\text{det}(A) \) (or \(\text{det}(xI - A) \)), perform row operations.

- Multiplying a row by \(\lambda \) multiplies the determinant by \(\lambda \).

- If we swap two rows, that multiplies the determinant by \(-1\).

- If we add a multiple of a row to another row, that does not change the determinant.

- The determinant of an upper-triangular matrix is the product of the diagonal entries!
Inverses of matrices using \(\det \) (11)

- Note that \(\det(A) \neq 0 \) iff \(A \) is invertible: if it is invertible, \(\det(A) \det(A^{-1}) = \det(AA^{-1}) = 1 \) so \(\det(A) \neq 0 \); if it is not invertible, then its columns are linearly dependent so \(\det(A) = 0 \) as we explained.

- So can we get a formula for \(A^{-1} \) using \(\det \)? More precisely, we would like \(A^{-1} = \det(A) \cdot A' \) for some matrix \(A' \) whose entries are polynomial functions of \(A \).

- Indeed, let \(A' = (a'_{ij}) \) where \(a'_{ij} = (-1)^{i-j} \times \) the determinant of the \((n-1) \times (n-1)\) matrix obtained by striking out the \(i\)-th column and the \(j\)-th row.

- Claim: \(A'A = \det(A)I = AA' \). This proves the formula!

- Proof: \((A')_i = \sum a'_{ik}a_{kj} = \det \) of the matrix obtained from \(A \) by replacing the \(i\)-th column with the \(j\)-th column.

 - This is zero unless \(i = j \), in which case we get \(\det \).

Properties of characteristic polynomial (12)

- Recall \(\chi_T := \chi_M(T) = \det(xI - M(T)) \).

- So, \(\chi_T(\lambda) = 0 \) iff \(\lambda \) is an eigenvalue (i.e., \(T - \lambda I \) is noninvertible). More generally:

 - Theorem: if \(f(x) \) is an irreducible polynomial, then \(f \) is a factor of \(\chi_T \) iff \(f(T) \) is noninvertible. See Optional Exercises #2 to get started.

Cayley-Hamilton theorem (13)

Theorem 4. \(\chi_T(T) = 0 \).

Proof (cf. Wikipedia)

- \(\chi_A(x)I = \det(xI - A)I = (xI - A)'(xI - A) \).

- Tricky part: Now write \((xI - A)' = B_0 + xB_1 + \ldots + x^{n-1}B_{n-1} \) where \(B_0, \ldots, B_{n-1} \) are all matrices with entries in \(F \), not polynomials.

- We find that \(\det(xI - A)I = B_0A + \sum_{i=1}^{n-1} (B_iA - B_{i-1})x^i + B_{n-1}x^n \).

- Write \(\chi_A(x) = \det(xI - A) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \).

- All the coefficients of both sides are equal: \(a_0I = B_0A, a_1I = B_1A - B_0, \) etc.

- Now we can plug in: \(\chi_A(A) = B_0A + \sum_{i=1}^{n-1} (B_iA - B_{i-1})A^i + B_{n-1}A^n \).

- All the terms on the RHS cancel, so \(\chi_A(A) = 0 \). \(\square \)
Further properties of characteristic polynomial (14)

- **Theorem:** The determinant of a block upper-triangular matrix is the product of the determinants of the diagonal blocks.

- **Proof:** Any permutation σ with an entry $a_{\sigma(i),i}$ above the block diagonal has also an entry $a_{\sigma(j),j}$ below the block diagonal, which is zero.

- **Consequence:** if $U \subseteq V$ is T-invariant and $V = U \oplus U'$, then $\det(T) = \det(T|_U) \cdot \det(P_{U,U'}T|_{U'})$. Same for χ_T.

- **Proof:** In basis for $V = U \oplus U'$, $\mathcal{M}(T) = \begin{pmatrix} \mathcal{M}(T|_U) & * \\ 0 & \mathcal{M}(P_{U',U}T|_{U'}) \end{pmatrix}$.

- In particular, if U, U' are both T-invariant, $\det(T) = \det(T|_U) \det(T|_{U'})$ and $\text{tr}(T) = \text{tr}(T|_U) + \text{tr}(T|_{U'})$.

The general decomposition theorem (15)

- **Theorem:** $V = \bigoplus_f V(f)$, where f ranges over irreducible polynomials such that $f(T)$ is noninvertible. Each $V(f)$ is a “generalized eigentuple,” and is T-invariant.

- **Proof:** Again, if $f(T)$ is noninvertible, then $V = \text{null} f^{\dim V}(T) \oplus \text{range} f^{\dim V}(T)$. Apply induction.

- **Restricted to** $V(f)$, T has a block (lower)-triangular matrix with diagonal blocks all equal to

$$
\begin{pmatrix}
0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & \cdots & 0 & -a_1 \\
0 & 1 & \cdots & 0 & -a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{k-1}
\end{pmatrix},
$$

where $f(x) = x^k + a_{k-1}x^{k-1} + \cdots + a_0$.

- **Jordan form:** We can make it so that all other entries are zero except for a single one in some corners between blocks.