Solving the Maxwell Eigenproblem

Want to solve for \(\omega_0(k) \), find \(\omega \) vs. \(k \) for "all" \(k \).

- Limit range of \(k \): irreducible Brillouin zone
- Limit degrees of freedom: expand \(H \) in finite basis
- Efficiently solve eigenproblem: iterative methods

\((V + \mathbf{k}) \mathbf{H} = \omega \mathbf{H} \)

where:

\[H_{jk} = \frac{1}{\epsilon_{jk}} \]

Limit degrees of freedom: expand \(H \) in finite basis

\[\mathbf{H} = \sum_{x} \mathbf{b}_x(x) \]

solve: \(\mathbf{A}[\mathbf{H}] = \omega^2 \mathbf{H} \)

finite matrix problem:

\[\mathbf{A} = \mathbf{H} \]

Many iterative methods:
- Arnoldi, Lanczos, Davidson, Jacobs-Davidson, ..., Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue \(\omega_0 \) minimizes:

\[\omega_0^2 = \min \left(\frac{\mathbf{H} \mathbf{h}}{\mathbf{h}^T \mathbf{H} \mathbf{h}} \right) \]

where \(\mathbf{h} \) is arbitrary function

\(\epsilon \)-averaging is Important

correct averaging changes order of convergence from \(\Delta x \) to \(\Delta x^2 \)

The Boundary Conditions are Tricky

- \(E_z \) is continuous
- \(E_x \) is discontinuous
- \(\mathbf{E}_f \) is continuous

Any single scalar fail

(\(\mathbf{D} \) or \(\mathbf{E} \))

Use a tensor \(\mathbf{E} \):

\[\left(\begin{array}{c} \psi_1 \end{array} \right) = \mathbf{E}_f \left(\begin{array}{c} \psi_1 \end{array} \right) \]

The Iteration Scheme is Important

(minimizing function of \(10^3 - 10^5 \) variables!)

\[\omega_0^2 = \min_{\mathbf{h}} \frac{\mathbf{h}^T \mathbf{A} \mathbf{h}}{\mathbf{h}^T \mathbf{B} \mathbf{h}} = f(h) \]

Steeped descent: minimize \((h + \alpha \nabla f)\) over \(\alpha \) ... repeat

Conjugate gradient: minimize \((h + \alpha d)\)

- \(d \) is \(\nabla f + \text{(stuff)} \): conjugate to previous search dir

Preconditioned steepest descent: minimize \((h + \alpha d)\)

- \(d \) is approximate \(\nabla f - \text{(approximate)} \text{(stuff)} \)

Preconditioned conjugate gradient: minimize \((h + \alpha d)\)

- \(d \) is approximate \(A^{-1} \text{(stuff)} \)

The Iteration Scheme is Important

(minimizing function of \(\approx 40,000 \) variables)

\[\mathbf{H} = \sum_{x} \mathbf{b}_x(x) \]

solve:

\[\mathbf{A} = \mathbf{H} \]

finite matrix problem:

\[\mathbf{A} = \mathbf{H} \]

Many iterative methods:
- Arnoldi, Lanczos, Davidson, Jacobs-Davidson, ..., Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue \(\omega_0 \) minimizes:

\[\omega_0^2 = \min \left(\frac{\mathbf{H} \mathbf{h}}{\mathbf{h}^T \mathbf{H} \mathbf{h}} \right) \]

where \(\mathbf{h} \) is arbitrary function

\(\epsilon \)-averaging is Important

correct averaging changes order of convergence from \(\Delta x \) to \(\Delta x^2 \)

The Boundary Conditions are Tricky

- \(E_z \) is continuous
- \(E_x \) is discontinuous
- \(\mathbf{E}_f \) is continuous

Any single scalar fail

(\(\mathbf{D} \) or \(\mathbf{E} \))

Use a tensor \(\mathbf{E} \):

\[\left(\begin{array}{c} \psi_1 \end{array} \right) = \mathbf{E}_f \left(\begin{array}{c} \psi_1 \end{array} \right) \]

The Iteration Scheme is Important

(minimizing function of \(10^3 - 10^5 \) variables!)

\[\omega_0^2 = \min_{\mathbf{h}} \frac{\mathbf{h}^T \mathbf{A} \mathbf{h}}{\mathbf{h}^T \mathbf{B} \mathbf{h}} = f(h) \]

Steeped descent: minimize \((h + \alpha \nabla f)\) over \(\alpha \) ... repeat

Conjugate gradient: minimize \((h + \alpha d)\)

- \(d \) is \(\nabla f + \text{(stuff)} \): conjugate to previous search dir

Preconditioned steepest descent: minimize \((h + \alpha d)\)

- \(d \) is approximate \(\nabla f - \text{(approximate)} \text{(stuff)} \)

Preconditioned conjugate gradient: minimize \((h + \alpha d)\)

- \(d \) is approximate \(A^{-1} \text{(stuff)} \)