Review of Part I

Complexity classes:
\[
\begin{align*}
\mathcal{P} : & \quad \text{class of problems solvable in poly time} \quad (\mathcal{O}(n^k)) \\
\mathcal{NP} : & \quad \text{class of problems verifiable in poly time} \\
\mathcal{NP}^-\text{-Hard} &: \quad \text{indirectly hard problems}
\end{align*}
\]

Approx. Algorithms:
- provide sup-optimal solutions
- solutions found in poly time despite problem being \(\mathcal{NP}^-\text{-Hard}\)
- can be used to find faster poly-time solutions to problems that already have poly time solutions

For a given approx. algorithm:

Denote \(\text{OPT} = \) optimal solution to problem
Denote \(C = \) solution found by approx. algo

Let’s say
\[
\begin{align*}
C & \leq \frac{2}{3} \text{OPT} \\
\text{or } C & \leq \frac{1}{2} \text{OPT}
\end{align*}
\]

\(P(n) = \max \left(\frac{\text{OPT}}{C}, \frac{C}{\text{OPT}} \right) = \) approximation ratio.

PTAS \(\Rightarrow\) Polynomial Time Approximation Scheme
- given \(\varepsilon\) as input, we can have a \((1 + \varepsilon)\)-approximation algorithm to given problem.
Cut: Partition of vertices into two disjoint subsets.

Cut-Set: Set of edges whose end points are in different subsets of the partition.

(Ref. to an *cut* too)

S-T cut: Cut in which S and T in different subsets.

Minimum cut: Cut with least weight of possible cut-set in a weighted graph \(G(V, E) \).

Terminal vertex: Vertex of degree 1.

Star: \(\star \) is a \(K_{1,3} \) star.

\[\text{center number of terminals.} \]
Multiway Cut Problem

\[G = (V, E) \begin{cases} \text{connected} \\ \text{undirected} \\ \text{weighted} \end{cases} \]

Problem: Given set of terminals \(S = \{S_1, S_2, \ldots, S_k\} \subseteq V \), a **multiway cut** is a set of edges whose removal disconnects terminals from each other. This problem asks for minimum weight of such a set.

Example:

\[
\begin{array}{c}
S_1 \\
2-8 \\
S_2 \\
2-8 \\
S_3 \\
2-8 \\
S_4
\end{array}
\]

\(S = \{S_1, S_2, S_3, S_4\} \)

Possible multiway cuts:

1. Take out all 8 edges
2. Take out 3 (2-8) edges \(\Rightarrow \) (minimum)

 many

Def. Isolating Cut

Isolating cut for \(S_i \) is set of edges whose removal disconnects \(S_i \) from rest of terminals.

Approx. Algorithm:

1. For each \(i = 1, \ldots, k \), compute minimum weight isolating cut for \(S_i \), say \(C_i \).
2. Discard heaviest of these cuts, and output union of the rest, say \(C \).
Each computation can be accomplished by combining all terminals other than \(s_i \) into a single node, and running the max-flow algorithm once.

Theorem: Approx. Algo. achieves guarantee of \(2 - 2/k \).

Proof: Let \(A = \text{optimal cut in } G \). Removal of \(A \) creates \(k \) connected components, each with one terminal.

Let \(A_i = \text{cut separating a component containing } s_i \) from the rest of the graph, then

\[
A = \bigcup_{i=1}^{k} A_i.
\]

Since each edge in \(A \) is incident at two of these components, each edge of \(A \) is incident at two of these components, each edge will be in two cuts of \(A_i \) and hence

\[
\sum_{i=1}^{k} \omega(A_i) = 2 \omega(A).
\]

\(A_i \) is an isolating cut for \(s_i \), and \(C_i \) is a minimum weight isolating cut for \(s_i \), \(\omega(C_i) \leq \omega(A_i) \). Further, \(C \) is obtained by discarding heaviest of the cuts \(C_i \),

\[
\omega(C) \leq (1 - \frac{1}{k}) \sum_{i=1}^{k} \omega(C_i) \leq (1 - \frac{1}{k}) \sum_{i=1}^{k} \omega(A_i) = 2 \left(1 - \frac{1}{k} \right) \omega(A).
\]
Minimum K-Cut Problem

K-Cut: Set of edges whose removal leaves k connected components.

For k ≥ 3, NP-Hard

k = 2 ⇒ Same case as s-t cut.

Natural Algorithm:

Start with G,
Compute cut in each connected component - take out smallest one
Repeat until you have k connected components
Achieves 2 - 2/k approx., but proof complicated

Gomory-Hu tree representation of minimum cuts

- Weighted tree that represents minimum s-t cuts for all s-t pairs in graph. It can be constructed in \(|V| - 1 \) minimum cut computations.

- Cut defined in graph \(G \) by partition \((S, \bar{S}) \) is cut associated with \(e \in E \).

- \(T \) is a Gomory-Hu tree for \(G \) if

 1. for each pair \((u, v) \in V \), weight of minimum \(u \rightarrow v \) cut in \(G \) is same as in \(T \).

 2. For each edge \(e \in T \), \(w(e) \) is weight of cut associated with \(e \) in \(G \).
Algorithm

2. Output union of lightest $k-1$ cuts of the $n-1$ cuts associated with edges of T in G; let C be their union.

If $S = \text{Union of cuts in } G \text{ associated with } l \text{ edges of } T$, then removal of S from G leaves a graph with at least $l+1$ components.

Theorem: Approx. algorithm achieves factor of $2 - \frac{\beta}{k}$.

Proof: $A = \text{optimal } k\text{-cut in } G$, A is union of k cuts, each consisting of connected components V_1, \ldots, V_k.

A_i is cut separating V_i from rest of graph.

Each edge of A lies in 2 cuts,

\[\frac{1}{2} w(A_i) \leq 2 w(A). \]
W.L.O.G. \Rightarrow A_k$ is heaviest of these cuts. Let B be a set of edges of T that connect across two of the sets V_1, V_2, \ldots, V_k. Consider graph on vertex set V and edge set B, and shrink V_1, V_2, \ldots, V_k to a single vertex. Shrink graph is connected since T is connected.

Throw away edges till tree remains, and let remaining k-1 edges denote the required k-1 cuts.

Root the tree at V_k.

Let edge $(u, v) \in B'$ correspond to V_i in this manner. Weight of minimum $u-v$ cut in G is $w'(u, v)$. Since A_i's a $u-v$ cut in G,

$$w'(u, v) = \sum_{i=1}^{k-1} w(A_i) \leq \frac{k-1}{2} \sum_{i=1}^{k-1} w(A_i) = \frac{k-1}{2} w'(v, k)$$

Each cut among $A_1, A_2, \ldots, A_{k-1}$ is at least as heavy as cut defined in G by corresponding edge of B'.

$$w(c) \leq \sum_{i=1}^{k-1} w(A_i) \leq \frac{k-1}{2} w'(v, k) \leq \frac{k-1}{2} w'(v, k)$$
K-center Problem

Given set of cities, pick k cities for locating warehouses so as to minimize max. distance of a city from its closest warehouse.

Formally,

K-center Problem

Let G = (V, E) be complete undirected graph with edge costs satisfying triangle inequality, and k be a positive integer. For any set \(S \subseteq V \) and vertex \(v \in V \), define connect \((v, S) \) to be the cost of cheapest edge from \(v \) to a vertex in \(S \). Find \(S \subseteq V \) with \(|S| = k \) so as to minimize max \(v \in V \) connect \((v, S) \).

Parameter Preserving \(\Rightarrow \) choose parameter instance \(I \).

Instance \(I \) is defined by removing parts that will not be used in any solution of cost \(\leq t \).

Sort edges of \(G \) in non-decreasing order:

\[
\text{cost}(e_1) \leq \text{cost}(e_2) \leq \cdots \leq \text{cost}(e_m)
\]

Let \(G_i = (V, E_i) \) where \(E_i = \{ e_1, e_2, \ldots, e_i \} \).
Dominating Set: In undirected graph $H=(V,E)$, a subset $S \subseteq V$ such that every vertex in $V-S$ is adjacent to a vertex in S.

$\text{Dom}(H)$: Size of minimum cardinality dominating set in H.

k-center problem: Finding smallest index i such that G_i has a dominating set of size at most k, $\text{cost}(e_i)$ is cost of such k-center.

G contains k stars spanning all vertices.

Star: $K_{1,p}$ for $p \geq 1$.

Example \Rightarrow $K_{1,3}$.

Square of graph H: Graph containing edge (u,v) whenever H has a path of length at most two between u and v.

Denote H^2.

Example: H vs. H^2.
Lemma: Given graph H, let I be independent set in H^2. Then $|I| \leq \text{dom}(H)$.

Proof: Let D be a minimum dominating set in H. H contains $|D|$ stars spanning all vertices, and each of these will be a clique in H^2 spanning all vertices. I can pick at most one vertex from each clique, and this follows.

Algorithm:

1. Construct G_1^2, \ldots, G_m^2.
2. Compute maximal independent set M_i in each graph G_i^2.
3. Find smallest index i such that $|M_i| \leq k$, say j.
4. Return M_j.

Theorem: Approx. algorithm achieves factor of 2 for k-center problem.

Proof:

Maximal independent set, I, is also a dominating set. If v is not dominated by I, then it should be in I and we have contradiction regarding I's cardinality.

Now, there exists stars in G_j^2 centered on vertex M_j, covering all vertices. Each edge used in constructing these stars has cost at most $2 \cdot \text{cost}((i,j))$.

For \(j \) as defined in algorithm, \(s(t_k) \in \text{OPT} \).

Proof:

For every \(i < j \), \(\text{dom}(e_i) \geq k \), and therefore \(\text{dom}(e_j) \geq k \), and so \(j \neq i^* \). Hence, \(j < i^* \).
Weighted k-center Problem

Problem. In addition to cost function on edges, we have a weight function on vertices. Find $S \subseteq V$ of total weight at most W, where $w: V \rightarrow \mathbb{R}^+$ and $W \in \mathbb{R}^+$, while minimizing

$$
\max_{v \in V} \min_{u \in S} \left\{ \text{cost}(u, v) \right\}
$$

with $\text{dom}(G_i) = \text{weight of minimum weight dominating set in } G_i$.

We need to find smallest index i s.t. $\text{dom}(G_i) \leq W$.

If i^* is this index, then cost of OPT solution is $\text{OPT} = \text{cost}(e_{i^*})$.

Given vertex, weighted graph H, let I be an independent set in H so for each $u \in I$, let $s(u)$ denote lightest neighbor of u in H, where u is also considered a neighbor of itself. (neighbor picked in H and not H^2)

$$
\text{let } S = \{ s(u) | u \in I \}
$$

Lemma. $W(S) \leq \text{dom}(H)$

Proof: D = minimum weight dominating set of H.

There exist disjoint stars in H centered on vertices of D covering all vertices. Each star becomes a clique in H^2, and we can pick at most one vertex from each. Then, each vertex in I has $\text{center of corresponding star available as a neighbor in } H$.

Hence, $W(S) \leq \text{dom}(H)$.
Approx. Algorithm

1. Construct G_1, \ldots, G_m
2. Compute max. indep. set M_i in each graph G_i
3. Compute $S_i = \{s_i(u) \mid u \in M_i\}$
4. Find minimum index i such that $w(S_i) \leq w$, say j
5. Return S_j

where $s_i(u)$ denotes the lightest neighbor of u in G_i, and u also considered a neighbor of itself.

Proof. $\text{cost}(S_j)$ is a lower bound on OPT. Since M_j is a dominating set in G^2_j, we can cover V with stars of G^2_j centered in vertices of M_j.

Each star center is adjacent to a vertex in S_j, using an edge of cost at most cost (e_j). Move each of the centers to the adjacent vertex in S_j and redefine the stars. By triangle inequality, largest edge cost used in constructing the final stars is at most $3 \cdot \text{cost}(e_j)$.

\[s_i(u) \leq 3 \cdot \text{cost}(e_i) \]

\[\leq 2 \cdot \text{cost}(e_i) \leq \text{cost}(e_i) \]

\[\leq 3 \cdot \text{cost}(e_i) \]
Approx. Algorithms

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>- worst-case robust</td>
<td>- worst-case oriented, can ignore algorithms that work well in average</td>
</tr>
<tr>
<td>- explains why problems vary in difficulty</td>
<td>- limited to clearly stated problems</td>
</tr>
<tr>
<td>- analysis reveals difficult vs. easy cases</td>
<td>- framework does not apply to decision problems</td>
</tr>
<tr>
<td>- can get practical heuristics</td>
<td>-</td>
</tr>
<tr>
<td>- sophisticated/beautiful ideas</td>
<td>-</td>
</tr>
</tbody>
</table>

Broadly

- not limited to NP-hard problems
- faster polynomial time algorithms
- limited space (external memory algorithms)
- limited access to data (streaming algorithms)