Approximation Algorithms

- for finding solutions to "hard" problems in polynomial time (NP-complete problems)
- provide "near optimal" solutions
- convert problem to an optimization problem
- place bound on approximate solution

Let $C^* = \text{optimal soln.}$

$C = \text{approx. soln.}$

- if minimize $\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n)$
 then approximation algorithm achieves approximation ratio $\rho(n)$ and is called
 $\rho(n)$-approximation algorithm

- PTAS (Polynomial time approximation scheme)
 Provide ϵ to algorithm so that algorithm will be a
 $(1+\epsilon)$-approximation algorithm
Complexity Classes

P: class of problems solvable in polynomial time $O(n^k)$ for constant k.

NP: class of problems verifiable in polynomial time.

Any problem in P also in NP.

$P \subseteq NP$, but is P proper subset of NP? Unknown.

NP-Complete: class of problems in NP but as (NPC) “hard” as any problem in NP.
Reductions

If any NPC problem can be solved in polynomial time, then every problem in NP has polynomial time algorithm.

Showing problem B is NP-Complete:

1. Show B in NP

2. Show B is NP-Hard

1. Showing B in NP:
 - show that a solution to B can be verified in polynomial time

2. Showing B is NP-Hard
 - have problem A which is NP-Hard

 instance of A \[\xrightarrow{\text{reduction algorithm}}\] \text{instance of B}

First problem shown to be NP-Hard:

Circuit Satisfiability Problem
Problem: Vertex Cover Problem

Un directed graph \(G = (V, E) \)

Vertex cover: Subset \(V' \) of \(V \) such that
if \((u,v) = e \in E\), then \(u \in V' \) or \(v \in V' \).

Find vertex cover of minimum size.

Algorithm:

Set \(C = \emptyset \)

while \(E \neq \emptyset \)

- take any edge \(e \in E \), where \(e = (u,v) \)
- add \(u \) and \(v \) to \(C \)
- remove all edges from \(E \) incident on \(u \) or \(v \)

return \(C \)

Analysis

Let \(A \) = set of edges picked in loop of algorithm
\(C^* \) = optimal solution
\(C \) = approximated solution

Since every edge picked must odd at least vertex,
\(|C^*| \geq |A|\).

For each edge picked we add two vertices,
\(|C| = 2 \cdot |A|\)

\(\therefore 2 \cdot |C^*| \geq |C|\)

and we have 2-approximation algorithm.
Partition

Problem:

Set S of n items with weights S_1, \ldots, S_n. Partition S into sets A and B and minimize

$$\max \left(\sum_{i \in A} S_i, \sum_{i \in B} S_i \right)$$

Sum of all defined as:

$$\sum_{i=1}^{n} S_i = w(S) = 2L$$

We know optimal solution $C \geq L$

Using PTAS, we choose ε, and choose m such that

$$\varepsilon \leq \frac{1}{m+1}$$

Assume W.L.O.G. that

$$S_1 \geq S_2 \ldots \geq S_n$$
Algorithm:

1st phase: Find optimal partition A', B' of S

2nd phase: $A \leftarrow A'$

$B \leftarrow B'$

for $i = m + 1$ to n:

if $w(A) \leq w(B)$

$A = A \cup \{i\}$

else

$B = B \cup \{i\}$
Analysis:

We know that approximation ratio is \(\frac{W(A)}{L} \).

Let us consider last item added to \(A \) to \(S_k \), which is \(k^{th} \) element in \(S \).

We have two cases:

Case 1: \(k \) was added to \(A \) in Phase 1.

- We know that \(A^1 \) is optimal for \(\{S_1, \ldots, S_m\} \).
- We know that \(S_{m+1}, \ldots, S_n \) were all added to \(B \) in Phase 2.

- \(A^1 = A = \) optimal

Case 2: \(k \) was added to \(A \) in Phase 2:

- We know that
 \[W(A) - S_k \leq W(B) \]
 \[W(A) - S_k \leq 2L - W(A) \]
 \[W(A) \leq L + \frac{S_k}{2} \]

Since we assumed \(S_1 > S_2 \ldots S_n \), we know

\[2L \geq (m+1)S_k \Rightarrow \frac{S_k}{2L} \leq \frac{1}{m+1} \]

We have:

\[\text{approx. ratio} = \frac{W(A)}{L} \leq \frac{L + \frac{S_k}{2L}}{L} \leq 1 + \frac{\frac{S_k}{2L}}{m+1} \approx 1 + \varepsilon \]

We thereby show that the approx. algorithm is an \((1 + \varepsilon)\) - approximation algorithm.
Problem: Let $S = \{S_1, \ldots, S_n\}$ and t

where t is an integer.

Find subset $S' \subseteq S$ such that

\[\sum_{i=1}^{n} S'_i = t \]

Algorithm:

\[n = |S| \]
\[L_0 = \langle 0 \rangle \]

for $i = 1$ to n:

\[L_i = \text{merge-list} \left(L_{i-1}, L_{i-1} + x_i \right) \]
\[L_i = \text{trim} \left(L_i, \frac{t}{2n} \right) \]

remove for L_i every element greater than t

let z^* be largest value in L_n

return z^*

Analysis:

We have a $(1+\varepsilon)$-approx. algorithm.
Traveling Salesman Problem

Problem:
Undirected Graph $G(V, E)$
with cost $c(u, v)$ for each edge $(u, v) \in E$

\Rightarrow find Hamiltonian tree of G with minimum cost

Algorithm:
Select a vertex $v \in V$
compute MST T
$L = \text{list of vertices in preorder walk of } T$
return Ham. cycle that visits V in order L

Analysis
We assume triangle inequality.
We have a 2-approx. algorithm.