Finding a Maximum Cardinality Matching in Bipartite Graphs

Alicia Thilani Singham Goodwin

18.304 • 3/4/2013
Instructions

Each of you needs a kidney but doesn’t have a willing donor who is a match (same blood type).

Take 5 minutes to find a partner with whom you can swap donor kidneys.
Our Goal:

• Make an algorithm to find the largest cardinality matching (most sets of partners) in a bipartite graph.

• *Teaser: This algorithm will also find the minimum size vertex cover of the graph!*
Helpful Definitions (1/2)

- **Bipartite Graph**: a graph whose vertices can be split into two disjoint sets (- and +) such that every edge connects a vertex in - to one in +

- **Matching**: a set of edges without common vertices

 - **Maximum Cardinality Matching**: largest # of edges
Helpful Definitions (2/2)

• An **alternating path** with respect to M alternates between edges in M and in $E-M$.

• An **augmenting path** with respect to M is an alternating path with first and last vertices exposed.
Helpful Definitions (2/2)

• An **alternating path** with respect to M alternates between edges in M and in $E-M$

• An **augmenting path** with respect to M is an alternating path with **first and last vertices exposed**
True or False?

1. This is a matching:
True or False?

1. This is a matching:

FALSE
True or False?

2. This is a matching:
2. This is a matching:

TRUE
True or False?

3. This is a maximum cardinality matching:
True or False?

3. This is a maximum cardinality matching:

FALSE
True or False?

4. This is an alternating path:
True or False?

4. This is an alternating path:

TRUE
True or False?

5. This is an **augmenting path**:
True or False?

5. This is an **augmenting path**: TRUE
True or False?

6. This is an **augmenting path:**

![Diagram of a network with a green dashed line as an augmenting path]
True or False?

6. This is an **augmenting path:**

TRUE
Augmenting a Matching

\[M = \{(1,6),(2,7)\} \]
Augmenting a Matching

\[M = \{(1,6), (2,7)\} \]

\[P = \{(5,7), (7,2), (2,9)\} \]
Augmenting a Matching

$M = \{(1,6),(2,7)\}$

$M' = \{(1,6),(2,9),(5,7)\}$

$P = \{(5,7), (7,2),(2,9)\}$
Algorithm

1 – Start with any matching M (let’s say $M = {}$)
2 – As long as there exists an **augmenting path** with respect to M:
 3 – Find augmenting path P with respect to M
 4 – Augment M along P: $M' = M \Delta P$
5 – Replace M with the new M'
Proof: A matching is maximum iff there are no augmenting paths
(by contradiction)

» If we have some augmenting path P wrt M:
 \[M' = M \Delta P, \text{ and } |M'| > |M| \]
 (so \(M \) couldn’t have been maximum)

« If \(M \) isn’t maximum, there must be some augmenting path Q such that
 \[Q = M \Delta M^* \] (where \(M^* \) is a maximum matching)
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

- Q has more/fewer/equal edges from M^* than from M
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

• Q has **more/fewer/equal** edges from M^* than from M
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

• Q has more/fewer/equal edges from M^* than from M

• Each vertex is incident to ___________ edge(s) in M^Q and ___________ edge(s) in M^*^Q.
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

- Q has more/fewer/equal edges from M^* than from M
- Each vertex is incident to at most one edge(s) in M^Q and at most one edge(s) in M^*^Q.

If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

- Q has more/fewer/equal edges from M^* than from M
- Each vertex is incident to at most one edge(s) in M^Q and at most one edge(s) in M^*^Q.
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \Delta M^*$

- Q has more/fewer/equal edges from M^* than from M

- Each vertex is incident to \textbf{at most one} edge(s) in $M \wedge Q$ and \textbf{at most one} edge(s) in $M^* \wedge Q$

- Therefore, Q is composed of cycles and paths that alternate between edges from M and M^*
If M isn’t maximum, there must be some augmenting path Q such that $Q = M \triangle M^*$

- Q has more/fewer/equal edges from M^* than from M
- Each vertex is incident to **at most one** edge(s) in $M \wedge Q$ and **at most one** edge(s) in $M^* \wedge Q$
- Therefore, Q is composed of cycles and paths that alternate between edges from M and M^*
- There must be some path with more edges from M^* than from M. This is an **augmenting path**.
Augmenting a Matching

\[M = \{(1,6),(2,7)\} \]

1 – Direct all edges in the matching from B to A

[Diagram showing the directed edges and vertices]
Augmenting a Matching

\[M = \{(1,6),(2,7)\} \]

1. Direct all edges in the matching from B to A, and all edges not in the matching from A to B.

2. Create a node \(s \) that connects to all exposed vertices in set A.

3. Do a Breadth First Search to find an exposed vertex in set B from node \(s \).
Augmenting a Matching

\[M = \{(1,6),(2,7)\} \]

1 – Direct all edges in the matching from B to A, and all edges not in the matching from A to B

2 – Create a node \(s \) that connects to all exposed vertices in set A
Augmenting a Matching

$$M = \{(1,6),(2,7)\}$$

1 – Direct all edges in the matching from B to A, and all edges not in the matching from A to B

2 – Create a node s that connects to all exposed vertices in set A

3 – Do a Breadth First Search to find an exposed vertex in set B from node s
Try one with a partner!
Algorithm

1 – Start with any matching M (let’s say $M = \{\}$).

2 – As long as there exists an **augmenting path** with respect to M:

3 – Find augmenting path P with respect to M.

4 – Augment M along P: $M' = M \Delta P$.

5 – Replace M with the new M'.
König’s Theorem (1931)

For any bipartite graph, the maximum size of a matching is equal to the minimum size of a vertex cover
Kidney Transplants
Kidney Transplants
Questions?