Divac and other differential operators

Let me quickly review the basic definitions of forms and vector fields, starting from a C^∞ manifold. As before, the idea is doing this so to help with subsequent generalizations.

A C^∞ manifold, X, for the moment without curves if you wish, comes equipped with a space of smooth functions, $C^\infty(X)$. A point $p\in X$ can be recoved from its defining ideal

$$J_p = \{u\in C^\infty(X) : u(p) = 0\}.$$

If we let $J_p^2 \subseteq C^\infty(X)$ be the finite span of products of elements of J_p

$$J_p^2 = \{u\in C^\infty(X) : u = \sum_{i=1}^n f_i g_i, \quad f_i, g_i \in J_p\}$$

then

$$T_p^* X = J_p / J_p^2$$
as the tangent space at \(p \). If \(u \in C^0(X) \) and \(u - m \in I_p \) so there is a well-defined element (1)

\[
d u(p) \in T^*_p X.
\]

Exercise: Show that if \(S_1, \ldots, S_X \) are local coordinates at \(p \) then \(d S_1, \ldots, d S_X \) as a basis for \(T^*_p X \); conclude that

\[
T^*_X = \bigcup_{p \in X} T^*_p X
\]

as a (real) vector bundle over \(X \).

Note that the local coordinates in \(T^*_U = \bigcup_{p \in U} T^*_p X \) induced by local coordinates \(S_1, -i S_2, \ldots, S_X \) on \(U \subset X \) are given by \((S_1, -i S_2, \ldots, S_X) \) where

\[
S = \sum_{j=1}^n S_j \cdot d \beta_j, \quad S \in T^*_p X.
\]

The \(C^0 \) structure on \(T^*_X \) is endowed with (1), namely

(2) \[
d : C^0(X) \to C^0(X; T^*_X)
\]

the map on the right can use the notation for smooth
section of \(T^*X \), this is the basic example of a (geometric) differential operator.

The usual tangent bundle \(TX \) can be defined as the dual of \(T^*X \) or dually in terms of derivations. That is

\[
T_pX = \{ v : C^0(X) \to \mathbb{R} ; v \text{ is linear and } v(fg) = f(p) v(g) + v(f) g(p) \}.
\]

Exercise: Show that \(T_pX \cong (T^*_pX)^* \) with the identification being given by a pairing

\[
T_pX \times T^*_pX \ni (v,s) \mapsto v(f), \quad f \in \mathcal{F}_p, \quad \|f\| = \sum_{i=1}^{n} |f_i| \in T^*_pX.
\]

A section \(\nu \in C^0(X, TX) \) will define a linear map

\[
\nu : C^0(X) \to C^0(X), \quad \nu f(p) = \nu_p f.
\]

By definition a linear differential operator, will have a coefficient acting a functions in just a combination of such vector fields.
\[P : C^0(\mathbb{R}) \to C^0(\mathbb{R}), \]

\[P_u = \sum_{\text{finite}} V_{k_a} \cdots V_{k_1} u \quad (X \text{ compact}) \]

The first ad can, \(k_a \leq 1 \), is just \(P = V + f \), \(V \in C^0(\mathbb{R}^+, TX), f \in C^0(\mathbb{R}) \).

We are interested in differential operators acting on (complex) vector bundles. Let me give a couple of equivalent definitions.

First, we can "reset" to local coordinates. The basis of \(T_pX \) induced by local coordinates \(\{ e_1, \ldots, e_n \} \) in \(\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \), where \(\frac{\partial}{\partial x^i} \cdot \frac{\partial}{\partial x^j} = \delta_{ij} \).

The local coordinates form \(f(3) \) as \(\text{let} \)

\[P_u = \sum_{|\alpha| \leq m} \delta(\alpha) \frac{\partial^\alpha}{\partial x^\alpha} c^\alpha \]

\(\text{using multiindex notation, } \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \).
\[\lambda_l = \lambda_1 + \cdots + \lambda_n, \quad D^\lambda = \left(\frac{1}{i} \partial^\lambda \right) = i^{m_1} \frac{\partial^{\lambda_1}}{\partial x_1^{\lambda_1}} \cdots \frac{\partial^{\lambda_n}}{\partial x_n^{\lambda_n}} \]

Thus a differential operator \(P \) is just \(\lambda \)-wise.

\[P : C^\infty(X) \to C^\infty(X) \] what takes the form (6)

\[\lambda_1 \log \partial x_1 \cdots \lambda_n \log \partial x_n \] in any local coordinates (not sufficient for this to be true is a covering of \(X \) by charts).

A vector bundle \(E \) has local trivialization \(U \) on \(X \) so covered by coordinate patches \(U_i \) on each of which \(E \) has a basis of smooth sections \(e_i \) - \(\mathbb{R} \).

If \(F \) is another vector bundle then we can find a covering by coordinate charts on which both \(E \) or \(F \) have fixed bases, as an trivial. Then

\[P : C^\infty(X; E) \to C^\infty(X; F) \]

a linear map, on a differential operator of order

(a linear map, on a differential operator of order

(\) at most) in if

\[P \left(\sum_{k=1}^{K} \Phi_k \, \xi_k \right) = \sum_{k=1}^{K} \left(P \xi_k \Phi_k \right) \xi_k \]
when the P_i are of the form (4). An interesting, although essentially useless, result is

Theorem (Reede) $P_i: C^0(X, E) \to C^0(X, F)$ is linear

iff on a different operator if and only if

$u = 0$ on $U \subset X \Rightarrow P_i u = 0$ on U

$\forall U \subset X$ then.

Exercise: Let $\text{Diff}^m(X; E, F)$ denote the space of linear differential operators between sections of bundles E and F. Show that composition of operators (of order at most m)

defines a product

$\text{Diff}^m(X; E, E_3) \cdot \text{Diff}^m(X; E_1, E_2) \subset \text{Diff}^m(X; E_1, E_3)$.

As I said before, we are mostly interested in first order operators, but we continue a little bit further here.
Suppose \(f \in C^0(X) \) and \(u \in C^0(X,E) \) for \(f \in E \),

(17) \(\eta_d = e^{i df} u \in C^0(X,E) \)

Leibniz' formula shows us how to distribute differentials on such a product, namely

\[
D^\alpha (uv) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} D^{\beta} u \cdot D^{\alpha - \beta} v,
\]

If we think that this means for \(P \), i.e.,

and considering Leibniz rule (6), we see that

(18) \(P(e^{i df} u) = e^{i df} P_d f u \)

Here \(P_d f \) is again a differential operator of the same order, with coefficients depending on \(df \). In fact,

\[
\delta P_d f = \sum_{s=0}^m d^s P_d (s)_f
\]
in a polynomial of degree at most $m-1$. The powers of t come from the derivatives. It is easy to check that $n-3$

\[P(t) \in \text{Diff}^m(X, E, F). \]

Now, if $n = m$, \(\text{Diff}^0(X, E, F) = C^0(X, \text{Hom}(E, F)) \)

is just the space of bundle maps for E to F. If $n > m$, P still depends on f but we can see that P is a polynomial in Diff^m of degree m.

\[\sigma(P) = (\text{Diff}^m, 0). \]

Definition: $\text{Pert}_{\text{Id}} f = \lim_{d \to \infty} e^{-tE} \text{Pert}_{\text{Id}} f e^{tE}$. It is a well-defined polynomial homography of degree m, where the fiber of T^*X at value v is $\text{Hom}(E, F)$.

\[\sigma(P) \in \mathbb{P}^m(T^*X; \text{Hom}(E, F)). \]
In local coordinates, \((5.141)\)

\[
P(\xi^L, \eta^L) = \sum_{\lambda | \lambda = \lambda} \sum_{\lambda' | \lambda' = \lambda'} \left(\phi_{\lambda', \lambda} (3) \Delta_{\lambda'} \right) \xi^{\lambda'}
\]

\[(1)\]

\[
\sigma(P)(8.5) = \sum_{\lambda | \lambda = \lambda} \sum_{\lambda' | \lambda' = \lambda'} \left(\phi_{\lambda', \lambda} (3) \Delta_{\lambda'} \right) \xi^{\lambda'}
\]

Of course, we could just use this as a definition, but then we would have to check coordinate invariance! The abstract-rigorous definition makes it easy to check this.

\[
\sigma(P \phi) = \sigma_{\mu} (P) \cdot \sigma_{\mu} (\phi)
\]

\[(1)\]

\[
P \in \text{Diff}^{\mu}(X, E_2, E_3), \quad \phi \in \text{Diff}^{\mu}(X', E_1, E_2).
\]

This "\(\sigma\)" kills both differential non-commutativity and just keeps the bare non-commutativity, but

The real importance of these "\(\sigma\)" is
Let me recall what a metric on a (real) vector bundle is. It is simply a positive-definite inner product on each fiber, varying smoothly. Thus, a metric \(\langle \cdot, \cdot \rangle_\rho \) on the fiber \(E_\rho \) of \(E \) has to be such that \(\langle e, e' \rangle \) is smooth \(\forall e, e' \in \mathcal{C}(X; E_\rho) \).

A metric on \(TX \) is a Riemannian metric. Now, the length-squared function for the dual metric

\[
\| \rho \|^2: T^*_p X \to \mathbb{R}
\]

is a homogeneous polynomial of degree two.
A generalized Dirac formula in a bundle E (complex) on a fibre-wise diffeomorphism $\varphi \in \text{Diff}^1(X; E)$ such that

$$(i) \quad (\varphi^*, \varphi^*) = 1 \cdot 1^2 \times \text{Id}$$

for a metric on φ^* (but E!)

What does this mean? Consider, for $f \in X$,

its square

$$(\varphi^* f)^2 = f \varphi^* f$$

This defines a linear map

$$T \varphi^* f : T^* X \rightarrow T \varphi^* f \in \text{Hom}(E)$$

Let's see its effect at (1). If $S_1, S_2 \in X$

then

$$\varphi^* (d(S_1 + S_2))^2 = |S_1 + S_2|^2$$
\[\sum_{k=0}^{N} V^k \left/ \left(e_{10} e_5 + e_{01} e_5 - 2 e_{10} \right) \right. \]

As a real space it is complete \(\mathbb{R}^V \).