Try each of the questions; they will be given equal value. You may use theorems from class, or the book, provided you can recall them correctly!

Problem 1

Consider the set \(S \) defined as follows. The elements of \(S \) are sequences, \(\{s_n\}_{n=1}^{\infty} \) with all entries either 1 or 2 and with the additional property that every 2 is followed by a 1. Said more precisely, for every \(n, s_n = 1 \) or \(s_n = 2 \) and if \(s_n = 2 \) then \(s_{n+1} = 1 \). Say why precisely one of the following is true

(a) \(S \) is finite
(b) \(S \) is countably infinite
(c) \(S \) is uncountably infinite

and then decide which one is true and prove it.

Problem 2

Consider the metric space \(M = [0,1] = \{x \in \mathbb{R}; 0 \leq x \leq 1\} \) with the usual metric, \(d(x,y) = |x - y| \). Is the set \(A = [0, \frac{1}{2}) = \{x \in \mathbb{R}; 0 \leq x < \frac{1}{2}\} \) open as a subset of \(M \)? What is the closure of \(A \) as a subset of \(M \)? Is \(A \) compact? Is the closure of \(A \) compact? In each case justify your answer.

Problem 3

Let \(M \) be a compact metric space. Suppose \(A \subset M \) is not compact. Show, directly from the definition or using a theorem proved in class, that \(A \) is not closed.

Problem 4

Recall that a set \(S \) in a metric space \(M \) is connected if any separated decomposition of it, \(S = A \cup B \) where \(A \cap B = \emptyset = A \cap \overline{B} \), is ‘trivial’ in the sense that either \(A \) or \(B \) is empty. Show that the whole metric space \(M \) is connected if and only if the only subsets \(A \subset M \) of it which are both open and closed are the ‘trivial’ cases \(A = \emptyset \) and \(A = M \).

Another possible Test

Problem 1

Show that the set \(\{0\} \cup \{1/n; n \in \mathbb{N}\} \) is compact as a subset of the metric space \(\mathbb{Q} \), the rational numbers, with the usual metric \(d(x,y) = |x - y| \).

Problem 2

Let \(X \) be a set with the discrete metric, \(d(x,x) = 0 \) and \(d(x,y) = 1 \) if \(x \neq y \). Show that every function \(f : X \rightarrow \mathbb{C} \) is continuous.
Problem 3
Consider the metric $d(x, y) = d_1((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$ on \mathbb{R}^2.

1) Show that if d is the usual metric on \mathbb{R}^2 then
 $$d(x, y) \leq d_1(x, y) \leq 2d(x, y) \forall x, y \in \mathbb{R}^2.$$
2) Show that the open sets relative to d_1 are the same as those relative to d.

Problem 4
Suppose that X is a metric space and $A \subset X$ is an open set which is compact and is neither empty nor equal to X. Show that X is not connected.