Due in 2-251, by Noon, Tuesday October 8. Rudin:

(1) Chapter 3, Problem 1
 Yes, this really is \mathbb{R}^k with the Euclidean metric.

(2) Chapter 3, Problem 20

(3) Chapter 3, Problem 21
 Note that the problem should say that $\{E_n\}$ is a sequence of closed, bounded and non-empty sets in a complete metric space with $E_n \supset E_{n+1}$ and if $\lim_{n \to \infty} \text{diam}(E_n) = 0$, where $\text{diam}(E) = \sup_{p,q \in E} d(p,q)$, then $\bigcap_{n=1}^{\infty} E_n$ consists of exactly one point.

(4) Chapter 3, Problem 22. [You might find this tricky!]