18.100B, Fall 2002, Homework 4, Solutions

Was due in 2-251, by Noon, Tuesday October 1. Rudin:

(1) Chapter 2, Problem 22
Let \(Q^k \subset \mathbb{R}^k \) be the subset of points with rational coefficients. This is countable, as the Cartesian product of a finite number of countable sets. Suppose that \(x = (x_1, \ldots, x_k) \in \mathbb{R}^k \). By the density of the rationals in the real numbers, given \(\epsilon > 0 \) there exists \(y_i \in \mathbb{Q}^k \) such that \(|x_i - y_i| < \epsilon/k \), \(i = 1, \ldots, k \). Thus if \(y = (y_1, y_2, \ldots, y_k) \) then

\[
|x - y| \leq \sqrt{k} \max_{i=1}^{k} |x_i - y_i| < \epsilon
\]

shows the density of \(Q^k \) in \(\mathbb{R}^k \). Thus \(\mathbb{R}^k \) is separable.

(2) Chapter 2, Problem 23
Given a separable metric space \(X \), let \(Y \subset X \) be a countable dense subset. The product \(A = Y \times \mathbb{Q} \) is countable. Let \(\{U_a\}, a \in A \), be the collection of open balls with center from \(Y \) and rational radius. If \(V \subset X \) is open then for each point \(p \in V \) there exists \(r > 0 \) such that \(B(p, r) \subset V \). By the density of \(Q \) in \(X \) there exists \(y \in Q \) such that \(p \in B(y, r/2) \). Moreover there exists \(q \in Q \) with \(r/2 < q < r \). Then \(x \in B(y, q) \). Thus each point of \(V \) is in an element of one of the \(U_a \)'s which is contained in \(V \), so

\[
V = \bigcup_{U_a \subset V} U_a.
\]

It follows that the \(\{U_a\}_{a \in A} \) form a base of \(X \) (actually now more usually called an open basis).

(3) Chapter 2, Problem 24
By assumption \(X \) is a metric space in which every infinite set has a limit point.

For each positive integer \(n \) choose points \(x_1(n), x_2(n), \ldots \) successively with the property that \(d(x_j(n), x_k(n)) \geq 1/n \) for \(k < j \). After a finite number of steps no further choice is possible. Indeed, if there were an infinite set of points \(E \) satisfying \(d(x, x') \geq 1/n \) for all \(x \neq x' \) in \(E \) then \(E \) could have no limit point – since a limit point \(q \in X \) would have to satisfy \(d(q, p_i) < 1/2n \) for an infinite number of (different) \(p_i \in E \) and this would imply that \(d(p_1, p_2) \leq d(p_1, q) + d(q, p_2) < 1/n \) which is a contradiction. Let \(Y \subset X \) be the countable subset, as a countable union of finite sets, consisting of all the \(x_j(n) \), for all \(n \). Then \(Y \) is dense in \(X \). To see this, given \(p \in X \) and \(\epsilon > 0 \) choose \(n > 1/\epsilon \). If \(p = x_j(n) \) for some \(j \) then it is in \(Y \). If not then for some \(j \), \(d(p, x_j(n)) < 1/n \); otherwise it would be possible to choose another \(x_j(n) \) contradicting the fact that we have chosen as many as possible. Then \(d(p, q) < \epsilon \) for some \(q \in Y \) which is therefore dense and \(X \) is therefore separable.

(4) Chapter 2, Problem 26
By assumption, \(X \) is a metric space in which every infinite subset has a limit point. By the problems above it is separable, and hence has a countable open basis, \(\{U_i\} \). Let \(\{V_a\}_{a \in A} \) be an arbitrary open cover of \(X \). Each \(V_a \) is a union of \(U_j \)'s by the definition of an open basis. For each \(j \) such that \(U_j \) is in one of these unions, choose a \(V_{a_j} \) which contains it. Then for every \(b \in A \), \(V_b \) must be contained in a union of the \(U_{a_j} \)'s, hence in the
union of the \(V_{a_i} \)'s which therefore form a countable subcover of the original open cover \(V_a \). Consider the successive open sets

\[
\bigcup_{i=1}^{N} V_{a_i}.
\]

If one of these contains \(X \) then we have found a finite subcover of the \(V_a \)'s. So, suppose to the contrary that

\[
F_N = X \setminus \bigcup_{i=1}^{N} V_{a_i} \neq \emptyset \quad \forall \ N.
\]

The \(F_N \)'s are decreasing as \(N \) increases. Let \(E \subset X \) be a set which contains one point from each \(F_N \). It must be an infinite set, since otherwise some fixed point would be in \(F_N \) for arbitrary large, hence all, \(N \) but

\[
\bigcap_{N \in \mathbb{N}} F_N = \emptyset
\]

Since together all the \(V_{a_i} \) do cover \(X \). By the assumed property of \(X \), \(E \) must have a limit point \(p \). For each \(N \), all but finitely many points of \(E \) lie in \(F_N \), so \(p \) must be a limit point of \(F_N \) for all \(N \), but each \(F_N \) is closed so this would mean \(p \in F_N \) for all \(N \), contradicting (1).