FOURTH MIDTERM
MATH 18.02, MIT, AUTUMN 12

You have 50 minutes. This test is closed book, closed notes, no calculators.

There are 5 problems, and the total number of points is 100. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:__________________________
Signature:_______________________
Student ID #:____________________
Recitation instructor:_____________
Recitation Number+Time:__________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20pts) Let R be the region in space which lies above the xy-plane and below the paraboloid $z = 1 - x^2 - y^2$. Calculate the moment of inertia about the z-axis; assume the density $\delta = 1$.

Solution:

$$I_z = \iiint_R x^2 + y^2 \, dV = \int_0^{2\pi} \int_0^1 \int_0^{1-r^2} r^3 \, dz \, dr \, d\theta.$$

The inner integral is

$$\int_0^{1-r^2} r^3 \, dz = \left[r^3z \right]_0^{1-r^2} = r^3(1 - r^2).$$

The middle integral is

$$\int_0^1 r^3 - r^5 \, dr = \left[\frac{r^4}{4} - \frac{r^6}{6} \right]_0^1 = \frac{1}{12}.$$

The outer integral is

$$\int_0^{2\pi} \frac{1}{12} \, d\theta = \frac{\pi}{6}.$$
2. (20pts) (i) A solid sphere of radius \(a \) is placed above the \(xy \)-plane so it is tangent at the origin and so the \(z \)-axis is a diameter. Give its equation in spherical coordinates.

\[x^2 + (z - a)^2 = a^2 \quad \text{so that} \quad x^2 + z^2 = 2za. \]

As \(x^2 + z^2 = \rho^2 \) and \(z = \rho \cos \phi \), the equation of the sphere is

\[\rho = 2a \cos \phi. \]

(ii) Give the equation of the horizontal plane \(z = a \) in spherical coordinates.

\[\rho \cos \phi = a. \]

(iii) Set up a triple integral in spherical coordinates which gives the volume of the portion of the sphere \(S \) lying above the plane \(z = a \).

\[\iiint_S 1 \, dV = \int_0^{2\pi} \int_0^{\pi/4} \int_{a \sec \phi}^{2a \cos \phi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta. \]
3. (20pts) Let D be the disk described by $x^2 + y^2 \leq 4$ and $z = 2$. Let T be the right circular cone formed by joining every point of D to the origin, so that $(0,0,0)$ is the vertex of the cone. Assume that T has constant density $\delta = 1$. Set up an iterated integral that gives the magnitude of the gravitational force acting on a unit mass at the origin.

Solution: If

$$\vec{F} = \langle F_x, F_y, F_z \rangle,$$

is the force due to gravity then $F_x = F_y = 0$ by symmetry. We have

$$|\vec{F}| = F_z = \iiint_T \frac{Gz}{\rho^3} \, dV = G \int_0^{2\pi} \int_0^{\pi/4} \int_0^{2\sec \phi} \cos \phi \sin \phi \, d\rho \, d\phi \, d\theta.$$
4. (20pts) Find the flux of the vector field

\[\vec{F} = y^4 \hat{i} - x^3 \hat{j} + z \hat{k}, \]

coming out of the unit sphere centred at the origin.

Solution: We apply the divergence theorem. Let \(S \) be the surface of the unit sphere, oriented outwards and let \(V \) the solid enclosed by \(S \). Then the flux coming out of the sphere is

\[
\oiint_{S} \vec{F} \cdot d\vec{S} = \iiint_{V} \text{div} \vec{F} \, dV = \iiint_{V} 1 \, dV = \frac{4\pi}{3}.
\]
5. (20pts) Let $\vec{F} = (y + z)\hat{i} - x\hat{j} + (7x + 5)\hat{k}$, be a vector field and let S be the part of the surface $z = 9 - x^2 - y^2$ that lies above the xy-plane. Orient S by using the outward normal vector. Find the outward flux of \vec{F} across S.

Solution: Let S' be the surface $x^2 + y^2 < 9$, $z = 0$, oriented upwards. By the divergence theorem

$$\oiint_{S-S'} \vec{F} \cdot d\vec{S} = \iiint_V \text{div} \vec{F} \, dV = \iiint_V 0 \, dV = 0.$$

So

$$\oiint_S \vec{F} \cdot d\vec{S} = \oiint_{S'} \vec{F} \cdot d\vec{S}.$$

The unit normal to S' is \hat{k}. So

$$\vec{F} \cdot \hat{k} = 7x + 5.$$

We have

$$\oiint_{S'} \vec{F} \cdot d\vec{S} = \iint_{S'} 7x + 5 \, dA = \iint_{S'} 5 \, dA = 45\pi,$$

since x is skew-symmetric about the y-axis.