18.152 – Problem Set 5

1. For any \(\mathbf{v} \in \mathbb{R}^n \), the translation operator, \(\tau_{\mathbf{v}} \), acts on functions \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) by \((\tau_{\mathbf{v}}f)(\mathbf{x}) = f(\mathbf{x} + \mathbf{v})\).

 (a) Considering first its action on \(L^1_{\text{loc}}(\mathbb{R}^n) \), define an extension \(\tau_{\mathbf{v}} : \mathcal{D}' \rightarrow \mathcal{D}' \) and prove that your operator is well-defined.

 (b) Let \(f \in \mathcal{D}' \). Using \(\tau_{\mathbf{v}} \) from (a), what is \(\lim_{h \to 0} \left(\frac{1}{h} \left((\tau_{h\mathbf{v}}f) - f \right) \right) \)?

 (c) Use (b) to recompute \(\lim_{n \to \infty} f_n \) from \# 2 of Problem Set 4.

2. Let \(a, b \) be non-negative numbers. Compute \(e^{-a|x|^2} * e^{-b|x|^2} \) by means of the Fourier transform.

3. Suppose \(f \in \mathcal{S} \) and \(p \) is a polynomial. Show \(f * p \) is a polynomial.

4. Suppose \(f \in L^1 \) is a radial function, i.e., \(f(A\mathbf{x}) = f(\mathbf{x}) \), for all orthogonal \(A \). Show that \(\hat{f} \) is also a radial function.

5. Let \(\mathcal{E} \) denote the class of piecewise continuous functions on \(\mathbb{R} \) that vanish for \(t < 0 \) and satisfy a growth estimate of the form \(|f(t)| \leq Ce^{at} \) for some \(a \in \mathbb{R} \).

 For a function \(f \in \mathcal{E} \), the Laplace transform of \(f \) is defined to be

 \[\mathcal{L}[f](z) := \int_0^\infty f(t)e^{-zt} dt, \]

 for \(z \in \mathbb{C} \) with \(\Re z > a \).

 (a) If \(f \) is continuous and piecewise smooth, with \(f' \in \mathcal{E} \), prove

 \[\mathcal{L}[f'](z) = z\mathcal{L}[f](z) - f(0). \]

 (b) Prove

 \[\mathcal{L}[tf(t)](z) = -(\mathcal{L}[f])'(z). \]