18.152 – Problem Set 3

2. Strauss 2.4, p. 53: # 9. From your answer, deduce the value of the integral
\[\int_{-\infty}^{\infty} s^2 e^{-s^2} \, ds. \]

3. Show that if \(u_t - u_{xx} = 0 \) on \([-1, 1]\) with \(u(\pm 1, t) = e^{2t} \) and \(u(x, 0) \geq 1 \), then \(u(x, t) \geq x^2 + 2t \) for all \(x \in [-1, 1] \) and \(t > 0 \).

4. Show that
\[u(x, t) = \sum_{k=0}^{\infty} f^{(k)}(t) \frac{x^{2k}}{(2k)!}, \]
where
\[f(t) = \begin{cases} e^{-t^2} & \text{if } t \neq 0 \\ 0 & \text{otherwise,} \end{cases} \]
is a \(C^\infty \)-function satisfying the heat equation \(u_t = u_{xx} \) on \(\mathbb{R} \times \mathbb{R} \) with \(u(x, 0) \equiv 0 \), but \(u(0, t) > 0 \) for \(t \neq 0 \).

5. Let \(\Omega \subset \mathbb{R}^n \) be a bounded open set with \(C^1 \)-boundary \(\partial \Omega \) and \(u \in C^2(\overline{\Omega} \times (0, T)) \cap C(\overline{\Omega} \times [0, T]) \) a solution to \(u_t = \Delta u \) in \(\Omega \times (0, T) \) with homogeneous Dirichlet conditions.

 (a) Define
 \[E(t) = \int_{\Omega} u^2(x, t) \, dV(x), \]
 and use Hölder’s inequality to prove that \(E''(t)E(t) \geq (E'(t))^2 \).

 (b) Prove that, where \(E(t) > 0 \), the function \(l(t) \equiv \log E(t) \) is convex in \(t \).

 (c) Conclude that if \(u(x, T) \equiv 0 \), then \(u(x, t) \equiv 0 \) on all of \(\Omega \times [0, T] \).

 (d) From this, formulate and prove a “backwards-uniqueness” property for the Dirichlet problem for the inhomogeneous heat equation on \(\Omega \).