Section 1.1 - Ex. 1

Let \(B \) be the collection of all Cauchy sequences. Show that \(B \) is uncountable.

Proof: Assume that \(B \) is countable.

Then there exists a bijection \(f : \mathbb{N} \to B \) that attaches to every element in \(B \) an index in \(\mathbb{N} \). (A)

Now, let \(\omega = \omega_1 \omega_2 \cdots \) be an element of \(B \) such that \(\omega_i = f(i) \), \(\forall i \in \mathbb{N} \)

Clearly such a \(\omega \) exists in \(B \),

namely \(f^{-1}(\omega) = i \Rightarrow \omega_i = f(i) \), for any \(i' \) such \(\omega_i \neq f(i') \), then \(f^{-1}(\omega) \) is not defined.

Thus \(f \) is not onto and so \(B \) is not a bijection.

Therefore such an \(f \) cannot exist

i.e. (A) fails

\(\therefore B \) is not countable, i.e. \(B \) is uncountable.
Section 1.1

To compute $S_n(w)$:

$$S_n(w) = \sum_{i=1}^{n} R_i(w)$$

Now, we started with -1, so you'll be ruined at time k if

$$S_k(w) = -1$$

and you've never been ruined "before" that, i.e., $S_i(w) > -1$ for $k > i$.

So,

$$S_0(w) = \begin{array}{c}
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
0 & \text{ out of 2} \\
\end{array}$$

$$S_1(w) = \begin{array}{c}
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
0 & \text{ out of 2} \\
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
-1 & \text{ out of 6} \\
\end{array}$$

$$S_2(w) = \begin{array}{c}
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
0 & \text{ out of 2} \\
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
1 & \text{ out of 8} \\
\end{array}$$

$$S_3(w) = \begin{array}{c}
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
0 & \text{ out of 2} \\
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
2 & \text{ out of 12} \\
\mid \hspace{1cm} \mid \hspace{1cm} \mid \\
3 & \text{ out of 32} \\
\end{array}$$

So at time 1, prob of ruin = $\frac{1}{2} = 0.5$ ($= M\left(\frac{1}{2}, \frac{1}{2}\right)$)

at time 3, prob of ruin = $\frac{1}{8} = 0.125$ ($= M\left(\frac{1}{2}, \frac{1}{2}\right)$)

at time 5, prob of ruin = $\frac{1}{32} = 0.0625$...

Now, $\text{Prob}(\text{Expected Ruin}) = \text{Prob}\left(\bigcup_{k=1}^{\infty} \text{Ruin at Time } k\right)$

at "Ruin at Time k" is an disjoint event.

$$= \sum_{k=1}^{\infty} \text{Prob}(\text{Ruin at Time } k)$$
\[\geq \text{Prob (win at 1)} + \text{Prob (win at 3)} + \text{Prob (win at 5)} + \text{Prob (win at 7)} \]

We have 1, 3 and 5.

Regarding 7:
- At \(S_5(w) \) we had five "1" intervals, that was of interest.
- So going to \(S_7(w) \) we'll get five "0" intervals.
- And going to \(S_9(w) \) yields five "1" intervals.

 \[\text{Out of } 2^7 = 128 \]

\[\text{Prob (win at 7)} = \frac{5}{128} = 0.0390625 \geq 0.039 \]

So \(\text{Prob (eventual Rain)} \geq 0.5 + 0.125 + 0.0625 + 0.039 \]

\[= 0.7265 \]

\[\Rightarrow 70\% \]

\[\text{Prob (eventual Rain)} > 70\% \]
Show that \[\int R_1 R_2 \ldots R_n \, dx = 0 \quad \text{or} \quad 1 \]

\[\text{or} \quad R_1 \leq R_2 \leq \ldots \leq R_n \]

"Quick idea in English."

All \(R_i \)s oscillate having frequencies which are multiple of each other. In other words, take the \(R_i \)s having the largest index; all \(R_j \)s having a \(j < i \) are constant during intervals where \(R_i \) oscillates having \(i \) as such as \(1 \).

i.e. when we want to integrate, the whole support consists of a union of such intervals and integrating over every interval yields a zero. This holds while you have an odd number of \(R \) having this largest index.

If you have an even number of them, their product is simply 1. So redo the procedure with the next largest index.

Correlating the problem: given \(\{ \delta_i \} \), such that \(\delta_j \leq \delta_k \) for \(j < k \)

Let \(\Gamma_n = \left\{ i : i \in \mathbb{N} \text{ and } i \leq n, 1, \ldots, n \right\} \) be the collection of indices.

Define \(I(\Gamma_n) = \int \prod_{i \in \Gamma_n} R_i \, dx = \int R_1 R_2 \ldots R_n \, dx \).
Now, define \(\Gamma_n = \{ e \in \Gamma_n' : Re = \gamma_n \} \).

This is simply the indices leaving the same value.

Then
\[
I(\Gamma_n') = \begin{cases} \overline{I(\Gamma_n' - \Gamma_n)} & \text{if } |\Gamma_n'| \text{ is even} \\ 0 & \text{if } |\Gamma_n'| \text{ is odd} \end{cases}
\]

For cases:
\[
I(\Gamma_0') = 1 \quad \text{(To would correspond To } \emptyset \text{)}
\]

we can only get to "To" if only get a succession of even indices.

i.e., they all multiply but to 1!!

If we happen to go to something odd, we'll get a zero as a result.
we have $R_k(n+1) = R_k(a)$

$$R_k(a) = \begin{cases} 1 & \text{if } a \in \bigcup_{i=0}^{\infty} \left[\frac{2i+1}{2^{k+1}}, \frac{2i+2}{2^{k+1}} \right] \\ -1 & \text{if } a \in \bigcup_{i=0}^{\infty} \left[\frac{2i}{2^{k+1}}, \frac{2i+1}{2^{k+1}} \right] \end{cases}$$

Claim

$$R_{k-1}(a) = \begin{cases} 1 & \text{if } a \in \bigcup_{i=0}^{\infty} \left[\frac{2i+1}{2^{k+1}}, \frac{2i+2}{2^{k+1}} \right] \\ -1 & \text{if } a \in \bigcup_{i=0}^{\infty} \left[\frac{2i}{2^{k+1}}, \frac{2i+1}{2^{k+1}} \right] \end{cases}$$

$$R_{k-1}(a) = R_k(2a) \quad \square$$

Show $R_k(a) = R_k(2^{k-1}a)$:

we have $R_{k-1}(a) = R_k(2a)$ (Claim)

Therefore by induction,

$$R_k(a) = R_{k-1}(2a)$$
$$= R_{k-2}(2a)$$
$$= \ldots$$
$$= R_1(2^{k-1}a)$$

so $R_k(a) = R_1(2^{k-1}a)$
Want to show that

\[R_n(x) = -\sqrt{n} \sin(2\pi x - \pi) \quad \text{except at a finite number of points} \]

for \(0 < x < 1 \):

\[-\sqrt{n} \sin(2\pi x - \pi) = -1 \iff \sin(2\pi x - \pi) > 0 \]

\[\iff 2k\pi < 2\pi x - \pi < \pi + 2k\pi \quad \forall k \in \mathbb{Z} \]

\[\iff \frac{k}{2} < x < \frac{k + 1}{2} \quad \forall k \in \mathbb{Z} \text{ st. } 0 < k < 1 \]

\[\iff R_n(x) = -1 \quad \text{and} \quad x \neq \frac{k}{2} \quad \forall k \in \mathbb{Z} \text{ st. } 0 < k < 1 \]

(\(k = 1 \) is not included!)

Note that

\[-\sqrt{n} \sin(\pi x - \pi) = 1 \iff -\sqrt{n} \sin(\pi x) = 1 \]

\[\iff R_n(x) = 1 \quad \forall k \in \mathbb{Z} \text{ st. } 0 < x < 1 \]

\[\forall k \in \mathbb{Z} \text{ st. } 0 < x < 1 \]
Therefore,

\[R_n(x) = -\text{sgn} \left[\sin \left(2\pi 2^{n-1} x \right) \right] \]

except at \(2^{n-1} \) points that correspond to

\[0, \frac{1}{2^{n-1}}, \frac{2}{2^{n-1}}, \frac{3}{2^{n-1}}, \ldots \]
Section 1.1: Ck id.

Let C be the Cantor set.

Show that C is uncountable.

Proof: Assume C is countable.

Then there exists a bijection \(f : \mathbb{N} \rightarrow C \) that assigns to each element in \(C \) an index in \(\mathbb{N} \).

Now, let \(w = (a_0, a_1, a_2, \ldots) \) be an element of \(C \)

such that \(a_k \neq f(k) \) for some \(k \in \mathbb{N} \).

Clearly such a \(w \) exists in \(C \).

"Simply go along the diagonal and offset 2 to 0, 0 to 2" because \(f(w) = \) a 1 = a(f(1)) for any i, but a i \neq f(i) at least once, \(f(w) \) is not defined, and \(f \) is not a bijection.

Thus, such an \(f \) cannot exist.

i.e. (C) fails.

\[\therefore \ C \ \text{is not countable, i.e. } C \ \text{is uncountable}. \]
Section 1.3

X uncountable set
R = collection of all finite subsets of X
\(m(A) \) of \(A \in R \), the number of elements in A.

Show that R is a ring

Let \(A, B \in R \) be two sets.

- then \(|A| < \infty \) and \(|B| < \infty \)

1) \(A \cup B \in R \)
 \(\Rightarrow \): \(|A \cup B| \leq |A| + |B| < \infty \)

2) \(A - B \in R \)
 \(\Rightarrow \): \(|A - B| \leq |A| < \infty \) (since \(A \cap B \subseteq A \))

Since 1) and 2) then \(R \) is a ring.

Show that \(\mu \) is a measure on \(R \)

We simply need to show that \(\mu \) is a countably additive, non-negative set function.

a) \(\mu \) is non-negative.
 \(\Rightarrow \): Let \(A \in R \) be a set, \(\mu(A) = |A| \geq 0 \)

b) \(\mu \) is countably additive, i.e.
 Given any countable collection \(\{A_i\}_{i=1}^{\infty} \subset R \) of \(A_i \)'s mutually disjoint and such that \(A = \bigcup_{i=1}^{\infty} A_i \) is also in \(R \), then \(\mu(A) = \sum_{i=1}^{\infty} \mu(A_i) \)
Lemma 1: \(M \) is finitely additive.

If \(A_1, A_2 \in \mathbb{R} \) are (mutually) disjoint,

then \(M(A_1 \cup A_2) = |A_1 \cup A_2| = |A_1| + |A_2| = M(A_1) + M(A_2) \)

By induction, we can extend this property as follows:

If \(A_1, A_2, \ldots, A_n \in \mathbb{R} \) are mutually disjoint, then

\[
M(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} M(A_i)
\]

Consider a set \(A \in \mathbb{R} \).

Now, let \(\{A_i\}_{i=1}^{\infty} \) be a disjoint collection of sets in \(\mathbb{R} \) such that \(A = \bigcup_{i=1}^{\infty} A_i \).

Then

(i) \(M(A) \geq \sum_{i=1}^{\infty} M(A_i) \)

\[\text{Proof: } \bigcup_{i=1}^{N} A_i \subseteq \bigcup_{i=1}^{\infty} A_i = A \quad \text{for every } N \]

So \(M(A) = |A| \geq |\bigcup_{i=1}^{N} A_i| = \mu\left(\bigcup_{i=1}^{N} A_i\right) \quad \text{for every } N \)

Then,

\[
M(A) \geq \sum_{i=1}^{\infty} M(A_i)
\]

(ii) \(M(A) \leq \sum_{i=1}^{\infty} M(A_i) \)

\[\text{Proof: } A \in \mathbb{R}, \text{ then } |A| < \infty \]

i.e. \(A \) is finite collection of elements in \(X \)

Then \(\exists C \in \mathbb{N} \) such that \(A = \bigcup_{i=1}^{C} A_i \) and \(|\delta| < \frac{a}{6} \)

In other words, we do not need the whole \(\{A_i\} \) sequence.

To construct \(A' \):

all but finite are empty.
(Small proof: \(\{ A_i \} \) is a disjoint collection of sets in \(\mathbb{R} \).)

Going from \(\bigcup A_i \) to \(A_i \), we:

Never add new elements
2) add nothing

1) may occur infinitely many times since \(|A| < \infty\)
2) when 2) occurs, this means that the added \(A_i \) is the empty set \(\emptyset \), therefore \(A_i \)'s are not disjoint.

So we can only keep those used in 1)
and so we get a finite collection)

Then \(\mu(A) = \mu(\bigcup A_i) = \sum_{i \in S} \mu(A_i) \leq \sum_{i=1}^{\infty} \mu(b_i) \)

Since 1) and 2) we get:

\[\mu\left(\bigcup_{i \in \mathbb{I}} A_i \right) = \sum_{i \in \mathbb{I}} \mu(A_i) \]

Since a) and b) then \(\mu \) is a measure.

Identity \(\mu^* \)

If \(A \in \mathbb{R} \), then \(\mu^*(A) = \mu(A) \)

If \(A \notin \mathbb{R} \), then \(A \) is either 1) countably negligible
in this case, by countable additivity we get \(\mu^*(A) = +\infty \)
2) uncountable
in this case \(\mathbb{L} \) is an outer measure \(\mu(A) = \emptyset \)
we get \(\mu^*(A) = +\infty \)
What are \mathcal{M} and \mathcal{M}_R?

\mathcal{M} is the closure of \mathcal{R} in \mathcal{M}_R. In this case, \mathcal{M} will be the collection of all countable sets in \mathcal{R}. $\mathcal{M}_R \subseteq \mathcal{R}$ finite (since \mathcal{R} has to be finite).

And \mathcal{M} would be the collection of all countable (finite or infinite) sets in \mathcal{M}_R.

Is every subset of \mathcal{M}_R measurable?

No, only countable sets in \mathcal{M}_R are measurable.
Section 1.3

$\mathbb{R} = \mathbb{Q}$

If $A \subseteq \mathbb{R}$, then $\mu(A) = 1$ if for some $\varepsilon > 0$ A contains $(0, \varepsilon)$

$\mu(A) = 0$ otherwise.

Show that μ is an additive set function, but is not countably additive.

μ is additive: If $A_1, A_2, \ldots, A_n \subseteq \mathbb{R}$ are mutually disjoint

then at most one of the A_i's will contain $(0, \varepsilon)$ for some $\varepsilon > 0$

Case 1: $\bigcup_{i=1}^n A_i \supseteq (0, \varepsilon)$ for some $\varepsilon > 0$

Then $\mu\left(\bigcup_{i=1}^n A_i\right) = 1$ and $\sum_{i=1}^n \mu(A_i) = \mu(A_k)$ where $A_k \supseteq (0, \varepsilon)$ for some $\varepsilon > 0$

Case 2: $\bigcup_{i=1}^n A_i \nsubseteq (0, \varepsilon)$ for all $\varepsilon > 0$

$\mu\left(\bigcup_{i=1}^n A_i\right) = 0$ and $\sum_{i=1}^n \mu(A_i) = \sum_{i=1}^n 0 = 0$

The cases are exhaustive. Then $\mu\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$

μ is not countably additive: Consider $A = (0, 1) \subseteq \mathbb{R}$

Take $A_i = \left(\frac{i}{2^n}, \frac{i+1}{2^n}\right)_{n=1}^\infty$

Then $\bigcup_{i=1}^\infty A_i \subseteq \mathbb{R}$ is a countable collection with the A_i's

mutually disjoint and such that $A = \bigcup_{i=1}^\infty A_i$

Now, $\mu(A) = \mu((0, 1)) = 1$

but $\sum_{i=1}^\infty \mu(A_i) = \sum_{i=1}^\infty 0 = 0$

$\int \infty$ countably additivity does not always hold.
Sect. 1.3

Our \(\mu \) is continuous, monotone increasing.

\[\mu_A(A) = \sum_{i=1}^{n} \mu_i(A_i) \]

Define that \(\mu_A \) is countably additive:

\[\mu_A(A) = \sum_{i=1}^{\infty} \mu_i(A_i) \]

The proof here will follow the same lines as that of the book.

If \(A = \bigcup_{i=1}^{n} A_i \) is a collection of disjoint elements \(\text{wt. } A \), \(\Rightarrow \)

\[\mu_A(A) = \sum_{i=1}^{n} \mu(A_i) \]

If \(A = \bigcup_{i=1}^{n} A_i \) is a collection of disjoint elements \(\text{wt. } A \), \(\Rightarrow \)

\[\mu_A(A) = \sum_{i=1}^{n} \mu(A_i) \]

Lemma: Let \(A \in \mathcal{R} \) and let \(\epsilon > 0 \) be given.

There exists \(F, G \in \mathcal{R} \) such that \(F \) is closed, \(G \) is open,

\[F \subseteq A \subseteq G, \text{ and } \mu(G) \leq \mu(F) + \epsilon \]

\[\mu(F) \leq \mu(G) \leq \mu(F) + \epsilon \]

\[\mu(F) = \mu(G) \leq \mu(F) + \epsilon \]
Proof of Lemma: Suppose \(A \) is a single interval \([a, b]\)

Then \(\forall \varepsilon > 0, \exists \delta > 0 \)

Case I:

\[
F(b - \delta) - F(a + \delta) \geq F(b) - F(a) - \varepsilon
\]

\[
F(c + \delta) - F(a - \delta) \leq F(b) - F(a) + \varepsilon
\]

Thus, we get three equations, three unknowns.

(please do note that the constraints for \(\varepsilon \) and \(\delta \)

are not binding, so a feasible point exists)

Case II: One may argue identically as in Case I.

Then let \(F = [a + \delta, b - \delta] \)

\[
G = (a - \delta, b + \delta)
\]

we have,

\[
F_{i}(G) \geq F_{i}(A) - \varepsilon
\]

\[
F_{i}(G) \leq F_{i}(A) + \varepsilon
\]

Now, suppose \(\bigcup_{i=1}^{k} A_{i} \) is a disjoint union of

intervals, then \(F_{i}, G_{i} \) for each \(A_{i}, \forall i \)

\[
\forall A_{i}, \text{ closed}, G_{i}, \text{ open}
\]

and \(F_{i}(G_{i}) \geq F_{i}(A_{i}) - \frac{\varepsilon}{k} \)

\[
F_{i}(G_{i}) \leq F_{i}(A_{i}) + \frac{\varepsilon}{k}
\]

then let \(F = \bigcup_{i=1}^{k} F_{i} \) and \(G = \bigcup_{i=1}^{k} G_{i} \), we'll have
\[\mu_F(F) = \sum_{i=1}^{k} \mu_F(A_i) \geq \sum_{i=1}^{k} \left[\mu_F(A_i) - \frac{\varepsilon}{k} \right] = \mu_F(A) - \varepsilon \]

\[\mu_F(A) \leq \sum_{i=1}^{k} \mu_F(A_i) \leq \sum_{i=1}^{k} \left[\mu_F(A_i) + \frac{\varepsilon}{k} \right] = \mu(A) + \varepsilon \]

so \[\mu_F(F) \geq \mu_F(A) - \varepsilon \]

\[\mu_F(A) \leq \mu_F(A) + \varepsilon \]

Notice, for the given \(A \), pick a closed set \(F \subseteq A \)

So, \[\mu_F(F) \geq \mu_F(A) - \frac{\varepsilon}{2} \]

and for each \(A_i \), choose an open set \(G_i \) containing \(A_i \) with \[\mu(G_i) \leq \mu(A_i) + \frac{\varepsilon}{2^i+1} \]

\(F \) is closed and bounded, then \(F \) is compact, so any open cover of \(F \) has a finite subcover.

But \(F \subseteq A \subseteq \bigcup_{i=1}^{N} G_i \), then \(\{G_i\}_{i=1}^{N} \) is an open cover of \(F \), and so we only need a finite union of \(G_i \)'s. No cover \(F \) namely \(\{G_i\}_{i=1}^{N} \)

So \[\mu_F(A) - \frac{\varepsilon}{2} \leq \mu_F(F) \leq \mu_F\left(\bigcup_{i=1}^{N} G_i \right) \leq \sum_{i=1}^{N} \mu_F(G_i) \]

\[\leq \sum_{i=1}^{N} \left[\mu_F(A_i) + \frac{\varepsilon}{2^i+1} \right] \]

\[\leq \sum_{i=1}^{N} \mu_F(A_i) + \frac{\varepsilon}{2} \]

\[\therefore \mu_F(A) \leq \sum_{i=1}^{N} \mu_F(A_i) + \varepsilon \]

So, \(\mu_F(A) \leq \sum_{i=1}^{N} \mu_F(A_i) + \varepsilon \n\]

Since \(\varepsilon \) is fixed \(\forall \varepsilon > 0 \), \[\mu_F(A) \leq \sum_{i=1}^{\infty} \mu_F(A_i) \]

\[\square \] and \(\square \Rightarrow \mu_F(A) = \sum_{i=1}^{\infty} \mu_F(A_i) \) i.e. \(\mu_F \) is countably additive.