18.024 Practice Problems for Final

1. Find the volume of the region bounded by \(z = x^2 + y^2 \) and \(z = 5 - x^2 - 2y^2 \).
2. Find the volume of the region described by \(x^2 + y^2 \leq a^2 \) and \(x^2 + z^2 \leq a^2 \).
3. Compute the triple integral \(\int_0^1 \int_0^x f(x, y, z) \, dz \, dy \) where \(W \) is the pyramid with top vertex \((0,0,1)\) and the base vertices at \((0,0,0), (1,0,0), (1,1,0)\).
4. Consider the integral
 \[
 \int_0^1 \int_0^x \int_0^y f(x, y, z) \, dz \, dy.
 \]
 Write the integral with the integration order \(dx \, dy \, dz \).
5. Use polar coordinates to evaluate \(\int_R \sqrt{x^2 + y^2} \, dx \, dy \) where \(R = [0, 1] \times [0, 1] \).
6. Compute \(\int_R (x+y)^2 e^{x+y} \, dx \, dy \) where \(R \) is the region bounded by \(x+y=1, x+y=4, \) \(x-y=-1 \) and \(x-y=1 \).
7. Consider the parametrized surface \(\Phi(r, \theta) = (r \cos \theta, r \sin \theta, \theta) \), \(0 \leq r \leq 1 \), \(0 \leq \theta \leq 4\pi \).
 Sketch and describe the surface. Find an expression for a “unit” normal to the surface and find the area of the surface.
8. Show that the surface \(z = (x^2 + y^2)^{-1/2} \), where \(1 \leq z < \infty \) can be filled but not painted! (i.e. the volume under the graph is finite but the surface area is infinite!)
9. Let \(S \) be the sphere of radius \(R \). Compute the integral \(\int_S (x^2 + y^2 + z^2) \, dS \) (This should be “very” easy). Use a clever idea to evaluate \(\int_S x^2 \, dS \).
10. Let \(S \) be the sphere of radius \(R \) and \(P \) be a point inside the sphere but not on it. Show that \(\int_S \frac{1}{||X-P||} \, dS = 4\pi R \). Here \(X = (x,y,z) \).
11. Let \(S \) be part of the cone \(z^2 = x^2 + y^2 \) with \(z \) between 1 and 2 oriented such that the unit normal goes out of the cone. Compute \(\int_S F \cdot n \, dS \) where \(F(x,y,z) = (x^2, y^2, z^2) \).
12. Find \(\int_S (\nabla \times F) \cdot n \, dS \) where \(S \) is the ellipsoid \(x^2 + y^2 + 5z^2 = 16 \) and \(F = (\sin(xy), e^{x+y}, xy^3) \). (Here the unit normal goes out of \(S \))
13. Let \(F = (y,-x,zx^3y^2) \). Evaluate \(\int_S (\nabla \times F) \cdot n \, dS \) where \(S \) is the surface \(x^2+y^2+z^2 = 1, z \leq 0 \) with the unit normal going out of the sphere.
14. Let \(F = (x^3,y^3,z^3) \). Compute the flux of \(F \) going out the unit sphere.
15. Let \(S \) be a closed surface which is the surface boundary of a solid \(V \) in \(\mathbb{R}^3 \). Evaluate \(\int_S (\mathbf{r} \cdot n) \, dS \) where the normal is outward.
16. Evaluate the surface integral \(\int_S F \cdot n \, dS \) where \(F = (1,1,z(x^2+y^2)^2) \) and \(S \) is the surface of the cylinder \(x^2+y^2 \leq 1, 0 \leq z \leq 1 \). (Here the unit normal goes inside the cylinder.)
17. Prove Gauss’ Law: Let V be a bounded solid which is bounded by a smooth orientable closed surface $S = \partial V$. Assume $(0, 0, 0)$ is not on S. Then the flux
\[\int \int_S \vec{r} \cdot \vec{n} \frac{dS}{r^3} \]
is zero if $(0, 0, 0) \notin V$ and it is equal to 4π if $(0, 0, 0) \in V$.