In these notes we prove the theorem stated without proof in Ch. IV, Exercises and Further Results, C6, p 489. The theorem describes the precise image of the Schwartz space \(\mathcal{S}(G) \) under the spherical transform. The proof is a modification of the proof by Anker [1991], a proof which included also the generalizations to \(\mathcal{S}^p(G) (0 < p \leq 2) \) described on p. 489. Anker’s proof was much simpler than the preceding ones and was accomplished by a skillful use and extension of the Paley–Wiener theorem (Ch. IV, Theorem 7.1) for the spherical transform. For the case \(p = 2 \) we shall here simplify the proof a bit further.

We shall use notation from the text (mainly Ch. IV) without repetition of definition.

1 Spherical Functions

Here we prove some estimates from Harish–Chandra [1958a] of the spherical function and its derivatives.

Theorem 1.1. Let \(\varphi_\lambda \) denote the spherical function

\[
\varphi_\lambda(g) = \int_K e^{i(\lambda - \rho)(H(gk))} \, dk \quad \lambda = \text{Re } \lambda + i \text{ Im } \lambda.
\]

Then we have the following estimates:

(i) \(e^{-\rho(H)} \leq \varphi_0(\exp H) \leq c(|H| + 1)^d e^{-\rho(H)} \), \(H \in \mathfrak{a}^+ \), where \(c \) is a constant, \(d = \text{Card } (\Sigma^+_0) \).

(ii) \(0 \leq \varphi_{-i\lambda}(H) \leq e^{\lambda(H)} \varphi_0(\exp H), \quad H \in \mathfrak{a}^+ \), \(\lambda \in \mathfrak{a}^*_+ \).

(iii) Given \(D \in \mathfrak{d}(G) \) there is a constant \(c > 0 \) such that

\[
|\langle D\varphi_\lambda \rangle(g)| \leq c(|\lambda| + 1)^{\deg D} \varphi_{i\text{Im } \lambda}(g).
\]

(iv) Given a polynomial \(P \in S(\mathfrak{a}^*) \) there is a constant \(c > 0 \) such that

\[
\left| P \left(\frac{\partial}{\partial \lambda} \right) \varphi_\lambda(g) \right| \leq c(|g| + 1)^{\deg P} \varphi_{i\text{Im } \lambda}(g),
\]

where \(|g| = |H| \) if \(g = k_1 \exp H k_2 \), \(H \in \mathfrak{a} \).

Proof:

(i) This part is Exercise IV, B1, and the proof is on p. 580. See also Harish–Chandra [1958a], p. 279 for the original proof.
(ii) We have

\[(1.2) \quad \varphi_{-i\lambda}(a) = \int_{K} e^{(\lambda - \rho)(H(ak))} ak \leq e^{\lambda(\log a)} \varphi_0(a) \quad a \in A^+ \]

by IV, Lemma 6.5.

(iii) According to Ch. IV, Lemma 4.4,

\[(1.3) \quad \varphi_\lambda(gh) = \int_{K} e^{(-i\lambda + \rho)(A(kg^{-1}))} e^{(i\lambda + \rho)(A(kh))} \, dk. \]

Let \(X \in \mathfrak{g} \) and \(\bar{X} \) the corresponding left-invariant vector field. Put \(h = \exp tX \) in (1.3) and take \((d/dt)_0\). We have \(A(k \exp tX) = \exp tAd(k)X \) so

\[(\bar{X}\varphi_\lambda)(g) = \int_{K} e^{(-i\lambda + \rho)(A(kg^{-1}))} ((Ad(k)\bar{X})\eta_\lambda)(e) \, dk, \]

where \(\eta_\lambda(h) = e^{(i\lambda + \rho)(A(h))} \). More generally, if \(D \in \mathbf{D}(G) \),

\[(D\varphi_\lambda)(g) = \int_{K} e^{(-i\lambda + \rho)(A(kg^{-1}))} ((Ad(k)D)\eta_\lambda)(e) \, dk. \]

Since \(\eta_k \) is left \(N \)-invariant and right \(K \)-invariant we have by Ch. II, Lemma 5.14,

\[(1.5) \quad (Ad(k)D\eta_\lambda)(e) = ((Ad(k)D)_a\bar{\eta}_\lambda)(e), \]

the bar denoting restriction to \(A \).

If \(\ell = \deg D \) we fix a basis \(D_1, \ldots, D_m \) of \(\mathbf{D}_\ell(A) \), the space of elements in \(\mathbf{D}(A) \) of degree \(\leq \ell \).

Then

\[(Ad(k)D) = \sum_{i=1}^{m} \eta_i(k)D_i, \quad \eta_i \in \mathcal{E}(K). \]

Thus expression (1.5) reduces to

\[\sum_{i=1}^{m} \eta_i(k)D_i(i\lambda + \rho) \]

so the right hand side of (1.4) is majorized by

\[c \int_{K} e^{(\Im \lambda + \rho)(A(kg^{-1}))} \, dk \quad (|\lambda| + 1)\ell \quad (c = \text{const.}). \]

Since (by (1.3)) \(\varphi_\mu(g^{-1}) = \varphi_{-\mu}(g) \), this proves (iii). Harish–Chandra’s original proof is in his paper [1958a], p. 294.

For (iv) we observe from (1.1) that

\[P \left(\frac{\partial}{\partial \lambda} \right) \varphi_\lambda(g) = \int_{K} e^{(i\lambda - \rho)(H(gk))} P(iH(gk)) \, dk \]

and now the result follows from IV §10, (14).
2 The Schwartz Spaces

The Schwartz space $I^2(G)$ consists of the K-bi-invariant functions $f \in E(G)$ for which the seminorm

$$\sigma_{D,q}(f) = \sup_g (|g| + 1)^q \phi_0(g)^{-1}|Df(g)|$$

is finite for each $q \in \mathbb{Z}^+$, $D \in \mathcal{D}(G)$. With these seminorms, $I^2(G)$ is a Fréchet space.

We consider the following transforms: The spherical transform $\mathcal{F} : f \rightarrow \tilde{f}$ given by

$$\tilde{f}(\lambda) = \int_G f(g) \varphi_\lambda(g) \, dg, \quad f \text{ K-bi-invariant},$$

the Euclidean Fourier transform $\mathcal{F}_0 : \varphi \rightarrow \varphi^*$ given by

$$\varphi^*(\lambda) = \int_A \varphi(a)e^{-i\lambda (\log a)} \, da,$$

and the Abel transform $f \rightarrow Af$ given by

$$(Af)(a) = e^{\rho(\log a)} \int_N f(an) \, dn, \quad f \text{ K-bi-invariant}.$$

We then have the commutative diagram

$$\begin{array}{ccc}
\mathcal{H}_W(a_*^c) & \xrightarrow{\mathcal{F}} & \mathcal{F}_0 \\
D^i(G) \xrightarrow{A} & & \mathcal{D}_W(A)
\end{array}$$

from Ch. IV, Theorem 7.1 and Cor. 7.4.

The Schwartz space $S(a^*)$ is topologized by the seminorms

$$\tau_{P,m}(h) = \sup_{a^*} (|\lambda| + 1)^m \left| P \left(\frac{\partial}{\partial \lambda} \right) h(\lambda) \right|$$

$m \in \mathbb{Z}^+$, $P \in S(a^*)$. Since the Laplacian L on G/K has the property

$$L \varphi_\lambda = -((\lambda, \lambda) + |\rho|^2) \varphi_\lambda$$

it is sometimes convenient to use the seminorms

$$\tau_{P,m}(h) = \sup_{a^*} \left| P \left(\frac{\partial}{\partial \lambda} \right) ((\lambda, \lambda) + |\rho|^2) h(\lambda) \right|,$$

which define the same topology on $S(a^*)$.

We shall have use for the following simple result. If $f \in S(\mathbb{R}^n)$ then

$$\left| \int_{\mathbb{R}^n} f(x) \, dx \right| \leq c_n \sup_x (|x|^{n+1}|f(x)|)$$

where c_n is a constant. In fact $|f(x)| \leq M(|x| + 1)^{-n-1}$ so left hand side of (2.7) is bounded by constant multiple of M.

The aim is now to prove that the bijection $\mathcal{F} : \mathcal{D}^i(G) \rightarrow \mathcal{H}_W(a_*^c)$ given by the Paley–Wiener theorem is bicontinuous for the topologies induced by $I^2(G)$ and $S(a^*)$. Let $S_W(a^*)$ denote the set of W-invariants in $S(a^*)$.
Lemma 2.1. The spherical transform \(f \to \tilde{f} \) given by (2) maps \(\mathcal{D}(G) \) continuously into \(S_W(a^*) \).

Proof:

To check the convergence of the integral

\[(2.8) \quad \tilde{f}(\lambda) = \int_G f(g)\varphi_-(g) \, dg, \quad \lambda \in a^*, \]

we use Theorem 5.8 in Ch. I to reduce the integral to one over \(A^+ \). Here the density \(\delta \) satisfies

\[(2.9) \quad \delta(\exp H) \leq c e^{2\rho(H)}, \quad H \in a^+, \]

for a constant \(c \). Since \(|\varphi_\lambda(g)| \leq \varphi_0(g) \) and, by (2.1), \(|f(g)| \leq \text{const} \,(|g| + 1)^{-q}\varphi_0(g) \) for each \(q \) the absolute convergence is clear from Theorem 1.1, (i). The smoothness in \(\lambda \) follows from Theorem 1.1 (iv). For the remaining statements we just have to prove that a seminorm \(\tau = \tau_{P,m} \) on \(S_W(a^*) \), there exists a seminorm \(\sigma = \sigma_{D,q} \) such that

\[(2.10) \quad \tau(\tilde{f}) \leq c_1 \sigma(f) \quad f \in \mathcal{D}(G), \]

where \(c_1 \) is a constant. We have

\[P \left(\frac{\partial}{\partial \lambda} \right) (\langle \lambda, \lambda \rangle)^m \tilde{f}(\lambda) = \int_G (-L)^m f(g) P \left(\frac{\partial}{\partial \lambda} \right) \varphi_-(g) \, dg. \]

Again we reduce the integral to \(A^+ \), use the estimates Theorem 1.1, (iv), (i), and combine with (2.9) and the estimate

\[|(Df)(a)| \leq (|a| + 1)^{-q}\varphi_0(a) \leq c(|a| + 1)^{-q+d}e^{-\rho(\log a)}. \]

Taking \(D = (-L)^m \) and \(q \) large (2.10) follows.

We now come to Anker’s principal lemma.

Lemma 2.2. The inverse map \(\mathcal{F}^{-1} : \mathcal{H}(a^*_+ \to \mathbb{D}^2(G) \) given by

\[(\mathcal{F}^{-1}h)(g) = f(g) = \int_{a^*} h(\lambda)\varphi_\lambda(g)|c(\lambda)|^{-2} \, d\lambda \]

is continuous in the topologies induced from \(S_W(a^*) \) and \(\mathcal{D}^2(G) \).

Proof: Given a seminorm \(\sigma = \sigma_{D,q} \) on \(\mathcal{D}^2(G) \) the problem is to find a seminorm \(\tau = \tau_{P,m} \) on \(S_W(a^*) \) such that

\[(2.11) \quad \sigma(f) \leq \tau(h) \quad \text{for } f \in \mathcal{D}^2(G). \]

We have for \(D \in \mathcal{D}(G) \)

\[(2.12) \quad (Df)(g) = \int_{a^*} h(\lambda)D\varphi_\lambda(g)|c(\lambda)|^{-2} \, d\lambda \]

and wish to estimate

\[(2.13) \quad F(g) = (|g| + 1)^q \varphi_0(g)(Df)(g) \]

because \(\sigma_{D,q}(f) = \sup_g |F(g)|. \) From Theorem 1.1(iii) and Ch. IV, Prop. 7.2 we have for a suitable \(m_0 \)

\[(2.14) \quad |(F(g))| \leq c_0(|g| + 1)^q \int_{a^*} (|\lambda| + 1)^{m_0}|h(\lambda)| \, d\lambda. \]

One would now like to remove the factor \((|g| + 1)^q \) by replacing \(h \) with a suitable derivative. It seems hard to do this globally, that is on all of \(G \). Following Anker we do this locally, that is by dividing \(G \) up into pieces on which this process works.
Consider the balls $B_j = \{ H \in a : |H| \leq j \}, j \in \mathbb{Z}^+$, and put $G_j = K \exp B_j K$. Let $\omega \in C_\infty (\mathbb{R})$ be an even function, $0 \leq \omega (x) \leq 1$, with the properties:

$$\omega (x) = 1 \text{ for } |x| \leq \frac{1}{2}, \omega \text{ has support in } (-1, 1).$$

We define $\omega_j \in \mathcal{D}_W (a)$ for $j \geq 1$ by

$$\omega_j (H) = \begin{cases} 1 & \text{ for } |H| \leq j - 1, \\ \omega(|H| - j + 1) & \text{ for } |H| > j - 1. \end{cases}$$

Then ω_j and each of its derivatives is bounded uniformly in j.

With $f \in \mathcal{D}^2 (G)$ let $h = \mathcal{F} f$, $g (H) = \mathcal{A} f (\exp H)$. Thus $g \in \mathcal{D}_W (a)$ and $h \in \mathcal{H} (a^*_e)$. We decompose $g = \omega_j g + (1 - \omega_j) g$, put $g_j = (1 - \omega_j) g$ and let f_j and h_j be the corresponding functions in $\mathcal{D}^2 (G)$ and $\mathcal{H} (a^*_e)$, respectively. We know from Ch. IV, Theorem 7.1 and Cor. 7.4, that for each closed ball $B \subset a$ with center 0,

$${\text{supp}} (f) \subset K \exp B K \iff {\text{supp}} (g) \subset B.$$

Since $g - g_j = 0$ outside B_j, $f - f_j = 0$ outside G_j. The constants below will depend on σ but neither on f nor on j. We now use (2.12) with f and h replaced by f_j and h_j, respectively. This does not change F outside G_j. Thus using (2.7) (and $j + 2 \leq 3j$) (2.14) implies

$$\sup_{G_{j+1} \setminus G_j} |F (g)| \leq c_1 j^q \tau_{1,m} (h_j), \quad m = m_0 + \dim a + 1.$$

We shall now prove, by Euclidean Fourier analysis, that given $q, m \in \mathbb{Z}^+$ there exists a seminorm

$$\tau_{d,t}^* (h) = \sum_{k=0}^{d} \sup_{a^*_e} (|\lambda| + 1)^{l} |\nabla^k h (\lambda)| \quad (\nabla = \text{gradient})$$

such that for all j,

$$j^q \tau_{1,m} (h_j) \leq c_2 \tau_{d,t}^* (h).$$

This would prove (2.11). For this consider

$$h_j (\lambda) = \int_a g_j (H) e^{-i \lambda (H)} dH.$$

We now shift polynomial factors on h_j to derivatives of g_j. Using (2.7) and the fact that g_j vanishes on B_{j-1} we get with $p = q + \dim a + 1$,

$$j^q \tau_{1,m} (h_j) \leq j^q c_3 \sum_{k=0}^{m} \int_a |\nabla^k g_j (H)| dH$$

$$\leq c_4 \sum_{k=0}^{m} \sup_{a} (|H| + 1)^{p} |\nabla^k g_j (H)|$$

$$\leq c_5 \sum_{k=0}^{m} \sup_{a} (|H| + 1)^{p} |\nabla^k g (H)|.$$
the last inequality coming from calculating the derivatives of $g_j = (1 - \omega_j)q$ by the product rule and recalling that each derivative of $1 - \omega_j$ is uniformly bounded in j. On the other hand,

$$g(H) = c_6 \int_{a^*} h(\lambda)e^{i\lambda(H)} d\lambda,$$

so from the last inequality we derive

$$j^q\tau_{1,m}(h_j) \leq c_7 \sum_{\ell=0}^{p} \int_{a^*} (|\lambda| + 1)^m |\nabla^\ell h(\lambda)| d\lambda$$

which again by (2.7) is dominated by a suitable $\tau_{p,m}^*(h)$. This proves the lemma.

It is well known that $\mathcal{D}(R^n)$ is dense in $S(R^n)$. This implies for our situation that $\mathcal{H}_W(a^*_1)$ is dense in $S_W(a^*)$.

Lemma 2.3. $\mathcal{D}^2(G)$ is dense in $\mathcal{I}^2(G)$.

Proof: We extend the function ω_j above to a K-bi-invariant smooth function ψ_j on G. Then $\psi_j \equiv 1$ on G_{j-1} and $\psi_j = 0$ outside G_j. Consider the seminorm $\sigma = \sigma_{D,q}$ in (2.1). Then

$$\sigma(\psi_j f - f) \leq \sup_{|g| > j-1} (1 + |g|)^q \varphi_0(g)^{-1} |D(\psi_j f - f)(g)|$$

$$\leq \frac{1}{j^q} (\sigma_{D,q+1}(\psi_j f) + \sigma_{D,q+1}(f)).$$

Also

$$D(\psi_j f) = \sum_i D_i(\psi_j) E_i(f) \quad D_i, E_i \in \mathcal{D}(G)$$

so our expression is majorized by

$$c \frac{1}{j^q} \sum_i (\sigma_{E_i,q+1}(f) + \sigma_{D,q+1}(f))$$

where c is a constant. Here we used again the uniform boundedness of $D_i\psi_i$ in j. The last estimate shows $\sigma(\psi_j f - f) \to 0$ proving the lemma.

Theorem 2.4. The spherical transform $\mathcal{F} : f \to \tilde{f}$ given by

$$\tilde{f}(\lambda) = \int_G f(g)\varphi_{-\lambda}(g) dg$$

is a homeomorphism of $\mathcal{I}^2(G)$ onto $S_W(a^*)$. The inverse \mathcal{F}^{-1} is given by

$$(\mathcal{F}^{-1}h)(g) = \text{const} \int_{a^*} h(\lambda)\varphi_\lambda(g)|c(\lambda)|^{-2} d\lambda.$$

Proof: The spaces $\mathcal{I}^2(G)$ and $S_W(a^*)$ are Fréchet spaces. Because of their completeness and the density in Lemma 2.3 the inverse \mathcal{F}^{-1} extends to a linear homeomorphism of $S_W(a^*)$ onto $\mathcal{I}^2(G)$. The inverse of this map must by Lemma 2.2 coincide with \mathcal{F}. Thus $\mathcal{F} : \mathcal{I}^2(G) \to S_W(a^*)$ is surjective.

We must still prove that our “abstract” extension of \mathcal{F}^{-1} to $S_W(a^*)$ is given by (2.15). Let $h \in S_W(a^*)$ and let $h_n \in \mathcal{H}_W(a^*_7)$ converge to h. Since $\varphi_\lambda(g)$ is bounded, and $|c(\lambda)|^{-2}$ bounded by a polynomial, we have $\tau_{1,m}(h_n - h) \to 0$. Thus the validity of (2.15) for h_n implies its validity for h.

6
Reference