HOMEWORK 3

1. 3.3.18

2. Let G be an open region in \mathbb{R}^2, (x_0, y_0) a point in G, and $u(x, y)$ a harmonic function defined on G. Denote by C_r the circle centered at (x_0, y_0) with radius r.

 (a) Suppose $r > s > 0$, and the closed disc bounded by C_r is contained in G. Let $v(x, y) = \ln \sqrt{(x-x_0)^2 + (y-y_0)^2}$. Show that $\int_{C_s} u \frac{\partial v}{\partial n} ds = \int_{C_r} u \frac{\partial v}{\partial n} ds$, where \mathbf{n} is the outward unit normal vector of these circles.

 (b) Show that, if the closed disc bounded by C_r is contained in G, then $u(x_0, y_0) = \frac{1}{2\pi r} \int_{C_r} u(x, y) ds$.

 (c) Assume G is connected. Show that $u(x, y)$ can not attain its maximum or minimum in G unless it’s a constant.

 (d) Suppose that G is bounded, and has smooth boundary ∂G. Let u_0 be a continuous function defined on ∂G. Show that the solution of the Dirichlet problem

 $$\begin{cases}
 \Delta u = 0 & \text{in } G, \\
 u = u_0 & \text{on } \partial G,
 \end{cases}$$

 if exists, is unique.