SL₂(k)-modules

Let \(L = sl_2(k) \). A basis is given by:

\[
 e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},
 f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
 g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

We have \([e, f] = h, [h, e] = 2e, [h, f] = -2f\). Thus, \(h \) is semisimple. Since \(L \) is simple, it is semisimple. Let \(V \) be an \(L \)-module, \(\dim V < \infty \). Then \(h : V \to V \) is semisimple. Thus \(V = \oplus_{\lambda \in k} V_{\lambda} \) where \(V_{\lambda} = \{ v \in V | hv = \lambda v \} \).

If \(v \in V_{\lambda} \) then \(ev \in V_{\lambda + 2}, fv \in V_{\lambda - 2} \).

Assume now that \(V \) is irreducible. We can find \(v_0 \in V - \{0\} \) such that \(ev_0 = 0 \). Set \(v_{-1} = 0, v_n = \frac{1}{n!}v_0, n \in \mathbb{N} \). We have

(a) \(hv_n = (\lambda - 2n)v_n \) for \(n \geq -1 \)

(b) \(fv_n = (n + 1)v_{n+1} \) for \(n \geq -1 \)

(c) \(ev_n = (\lambda - n + 1)v_{n-1} \) for \(n \geq 0 \).

(c) is shown by induction on \(n \). For \(n = 0 \) it is clear. Assuming \(n \geq 1 \),

\[
 ev_n = n^{-1}efv_{n-1} = n^{-1}hv_{n-1} + n^{-1}fev_{n-1} \\
 = n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}f(\lambda - n + 2)v_{n-2} \\
 = n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}(\lambda - n + 2)(n - 1)v_{n-1} = (\lambda - n + 1)v_{n-1}.
\]

By (a), the non-zero \(v_n \) are linearly independent. Since \(\dim V < \infty \), there exists \(m \geq 0 \) such that \(v_0, v_1, \ldots, v_m \) are \(\neq 0 \) and \(v_{n+1} = 0 \). Then \(v_{m+1} = v_{m+2} = \cdots = 0 \). Now \(v_0, v_1, \ldots, v_m \) form a basis of an \(L \)-submodule which must be the whole of \(V \). Now (c) with \(n = m + 1 \) gives \(0 = (\lambda - m)v_n \) hence \(\lambda = n \). Thus the action of \(e, f, h \) in the basis \(v_0, v_1, \ldots, v_m \) is

\[
 hv_n = (m - 2n)v_n \text{ for } n \in [0, m] \\
 fv_n = (n + 1)v_{n+1} \text{ for } n \in [0, m] \\
 ev_n = (m - n + 1)v_{n-1} \text{ for } n \in [0, m]
\]

with the convention \(v_{-1} = 0, v_{m+1} = 0 \).

Conversely, given \(m \geq 0 \) we can define an \(L \)-module structure on an \(m + 1 \) dimensional vector space with basis \(v_0, v_1, \ldots, v_m \) by the formulas above. Thus we have a 1-1 correspondence between the set of isomorphism classes of irreducible \(L \)-modules and the set \(\mathbb{N} \).

Now let \(V \) be any finite dimensional \(L \)-module. Then:
(a) the eigenvalues of \(h : V \to V \) are integers; the multiplicity of the eigenvalue \(a \) equals that of \(-a\).

(b) If \(h : V \to V \) has an eigenvalue in \(2\mathbb{Z} \) then it has an eigenvalue \(0 \).

(c) If \(h : V \to V \) has an eigenvalue in \(2\mathbb{Z} + 1 \) then it has an eigenvalue \(1 \).

Indeed, by Weyl, we are reduced to the case where \(V \) is irreducible; in that case we use the explicit description of \(L \) given above.

ROOTS

Let \(L \) be a semisimple Lie algebra \(\neq 0 \). A subalgebra \(T \) of \(L \) is said to be **toral** if any element of \(T \) is semisimple in \(L \).

Lemma. If \(T \) is toral then \(T \) is abelian.

Let \(x \in T \). Assume that \(\text{ad}(x) : T \to T \) has some eigenvalue \(a \neq 0 \). Thus \([x, y] = ay\) for some \(y \in T - \{0\} \). Now \(\text{ad}(y) : L \to L \) is semisimple hence \(\text{ad}(y) : T \to T \) is semisimple hence \(x = \sum_j u_j \) where \(u_j \in T \) are eigenvectors of \(\text{ad}(y) : T \to T \) with corresponding eigenvalue \(\lambda_j \). Hence \(\text{ad}(y)x = \sum_{j; \lambda_j \neq 0} \lambda_j u_j \).

But \(\text{ad}(y)x = -ay \). But \(y \) is in the 0-eigenspace of \(\text{ad}(y) \) and \(\sum_{j; \lambda_j \neq 0} \lambda_j u_j = -ay \) is a contradiction. Thus, all eigenvalues of \(\text{ad}(x) : T \to T \) are 0. Now \(\text{ad}(x) : L \to L \) is semisimple hence \(\text{ad}(x) : T \to T \) is semisimple hence \(\text{ad}(x) : T \to T \) is 0. The lemma follows.

Let \(H \) be a maximal toral subalgebra of \(L \). Now \(\{\text{ad}(h) : L \to L | h \in H\} \) is a family of commuting semisimple endomorphisms of \(L \). Hence \(L = \bigoplus \alpha L_{\alpha} \) where \(\alpha \) runs over the dual space \(H^* \) of \(H \) and \(L_{\alpha} = \{x \in L | [h, x] = \alpha(h)x \forall h \in H\} \). Now \(L_0 = \{x \in L | [h, x] = 0 \forall h \in H\} \) and \(H \subset L_0 \) by the lemma. We say that \(\alpha \in H^* \) is a root or \(\alpha \in R \) if \(\alpha \neq 0 \) and \(L_\alpha \neq 0 \). We have \(L = L_0 \oplus \bigoplus_{\alpha \in R} L_\alpha \) (root decomposition or Cartan decomposition).

Lemma. (a) For any \(\alpha, \beta \in H^* \) we have \([L_{\alpha}, L_{\beta}] \subset L_{\alpha+\beta} \).

(b) If \(x \in L_{\alpha}, \alpha \neq 0 \) then \(\text{ad}(x) \) is nilpotent.

(c) If \(\alpha, \beta \in H^*, \alpha + \beta \neq 0 \) then \(\kappa(L_{\alpha}, L_{\beta}) = 0 \).

(a) Let \(x \in L_{\alpha}, y \in L_{\beta} \). For \(h \in H \) we have
\[
[h, [x, y]] = [[h, x], y] + [x, [h, y]] = \alpha(h)[x, y] + \beta(h)[x, y] = (\alpha + \beta)(h)[x, y]
\]
hence
\[[x, y] \in L_{\alpha+\beta} \).

(b) For any \(\beta \in H^* \) we have \(n\alpha + \beta \notin R \) for large \(n \) hence using (a), \(\text{ad}(x)^nL_\beta = 0 \). Now (b) follows.

(c) We can find \(h \in H \) with \((\alpha + \beta)(h) \neq 0 \). Let \(x \in L_{\alpha}, y \in L_{\beta} \). We have \(\kappa([h, x], y) = \kappa([y, h], x) \) hence \(\alpha(h)\kappa(x, y) = -\beta(h)\kappa(x, y) \). Thus \((\alpha + \beta)(h)\kappa(x, y) = 0 \) and \(\kappa(x, y) = 0 \).

Lemma. The restriction of \(\kappa \) to \(L_0 \) is non-singular.

Proposition. \(L_0 = H \).

We show:
(a) If \(x \in L_0 \) and \(x = s + n \) is a Jordan decomposition in \(L \) then \(s \in L_0, n \in L_0 \).
We have \(\text{ad}(x)H \subset \{0\} \) hence \(\text{ad}(x)_sH \subset \{0\}, \text{ad}(x)_nH \subset \{0\} \), hence \(\text{ad}(s)H \subset \{0\}, \text{ad}(n)H \subset \{0\} \), hence \(s \in L_0, n \in L_0 \).

(b) If \(x \in L_0 \) is semisimple in \(L \) then \(x \in H \).
From the assumption, \(H + kx \) is a toral algebra hence it is \(H \) by the maximality of \(H \). Hence \(x \in H \).

(c) The restriction of \(\kappa \) to \(H \) is non-singular.
Assume that \(h \in H \) and \(\kappa(h, H) = 0 \). Let \(x = s + n \in L_0 \) be as in (a).
Then \(s \in L_0, n \in L_0 \). By (a) we have \(s \in H \) hence \(\kappa(h, s) = 0 \). Now \(\text{ad}(n) : L \to L \) is nilpotent and \(\text{ad}(n), \text{ad}(h) \) commute hence \(\text{ad}(h)\text{ad}(n) \) is nilpotent hence \(\text{tr}(\text{ad}(h)\text{ad}(n), L) = 0 \). Thus \(\kappa(h, n) = 0 \). Hence \(\kappa(h, x) = 0 \). Thus \(\kappa(h, L_0) = 0 \).
Since \(\kappa|_{L_0} \) is non-singular, we have \(h = 0 \).

(d) \(L_0 \) is nilpotent.
By Engel it is enough to show that, if \(x \in L_0 \) then \(\text{ad}(x) : L_0 \to L_0 \) is nilpotent.
Write \(x = s + n \) as in (a). Now \(\text{ad}(s) : L_0 \to L_0 \) is 0 since \(s \in H \) (by (b)). Also \(\text{ad}(n) : L \to L \) is nilpotent hence \(\text{ad}(x) = \text{ad}(n) : L_0 \to L_0 \) is nilpotent.

(e) \([L_0, L_0] \cap H = 0 \).
Let \(x \in [L_0, L_0] \cap H \). Write \(x = \sum_i [x_i, y_i] \) where \(x_i, y_i \in L_0 \). If \(h \in H \) we have \(\kappa(h, x) = \sum_i \kappa(h, [x_i, y_i]) = \sum_i \kappa(x_i, [y_i, h]) = 0 \) since \([y_i, h] = 0 \). Thus \(\kappa(h, x) = 0 \). Since \(x \in H \) we see from (c) that \(x = 0 \).

(f) \([L_0, L_0] = 0 \).
Otherwise, we have \([L_0, L_0] \neq 0 \). Since \(L_0 \) is nilpotent and \([L_0, L_0] \) is a non-zero ideal, we then have \([L_0, L_0] \cap \text{centre}(L_0) \neq 0 \) (by a corollary of Engel). Let \(x \in [L_0, L_0] \cap \text{centre}(L_0), x \neq 0 \). Write \(x = s + n \) as in (a). Since \(\text{ad}(x)(L_0) \subset 0 \) we have \(\text{ad}(x)_n(L_0) \subset 0 \) hence \(\text{ad}(n)(L_0) \subset 0 \) hence \(n \in \text{centre}(L_0) \). Hence for any \(x' \in L_0, \text{ad}(x'), \text{ad}(n) : L \to L \) commute and \(\text{ad}(n) \) is nilpotent hence \(\text{ad}(x')\text{ad}(n) : L \to L \) is nilpotent hence \(\text{tr}(\text{ad}(x')\text{ad}(n), L) = 0 \) hence \(\kappa(x', n) = 0 \). Thus \(\kappa(L_0, n) = 0 \). Since \(\kappa|_{L_0} \) is non-singular we have \(n = 0 \). Thus \(x = s \in H \) (see (b)). Hence \(x \in [L_0, L_0] \cap H \) which is 0 by (e). Hence \(x = 0 \) a contradiction.

(g) If \(x \in L_0 \) is nilpotent then \(x = 0 \).
For all \(y \in L_0, \text{ad}(x), \text{ad}(y) \) commute and \(\text{ad}(x) \) is nilpotent hence \(\text{ad}(x)\text{ad}(y) : L \to L \) is nilpotent hence \(\text{tr}(\text{ad}(x)\text{ad}(y), L) = 0 \). Hence \(\kappa(x, y) = 0 \). Hence \(\kappa(x, L_0) = 0 \). Since \(\kappa|_{L_0} \) is non-singular we have \(x = 0 \).

We can now prove the proposition. Let \(x \in L_0 \). Write \(x = s + n \) as in (a). Then \(s \in L_0, n \in L_0 \). By (g) we have \(n = 0 \). By (b) we have \(s \in H \). Hence \(x \in H \). The proposition is proved.

Properties of roots.
Let \(\xi \in H^* \). Since \(\kappa|_H \) is non-singular there exists a unique element \(t_\xi \in H \) such that \(\xi(h) = \kappa(t_\xi, h) \) for all \(h \in H \). Now \(\xi \mapsto t_\xi \) is an isomorphism \(H^* \xrightarrow{\sim} H \).

(a) \(R \) spans the vector space \(H^* \).
If not, we can find \(h \in H, h \neq 0 \) so that \(\alpha(h) = 0 \) for all \(\alpha \in R \). Then \([h, L_\alpha] = 0 \) for all \(\alpha \in R \). Also \([h, L_0] = 0 \) since \(L_0 = H \) is abelian. Hence \([h, L] = 0 \) so that \(h \in Z(L) \). But \(Z(L) = 0 \) since \(L \) is semisimple. Thus \(h = 0 \), contradiction.
(b) If \(\alpha \in R \) then \(-\alpha \in R \).

Assume that \(-\alpha \notin R \). Then \(L_{-\alpha} = 0 \). Hence \(\kappa(L_\alpha, L_\beta) = 0 \) for any \(\beta \in H^* \) hence \(\kappa(L_\alpha, L) = 0 \). Since \(\kappa \) is non-singular we have \(L_\alpha = 0 \), absurd.

(c) If \(\alpha \in R, x \in L_\alpha, y \in L_{-\alpha} \) then \([x, y] = \kappa(x, y)t_\alpha \).

Let \(h \in H \). We have \(\kappa(h, [x, y]) = \kappa(y, [h, x]) = \alpha(h)\kappa(y, x) = \kappa(t_\alpha, h)\kappa(y, x) \) hence \(\kappa(h, [x, y] - \kappa(x, y)t_\alpha) = 0 \). Thus \(\kappa([x, y] - \kappa(x, y)t_\alpha, H) = 0 \). Since \([x, y] - \kappa(x, y)t_\alpha \in H \) and \(\kappa_H \) is non-singular, we have \([x, y] - \kappa(x, y)t_\alpha = 0 \).

(d) Let \(\alpha \in R \) and let \(x \in L_\alpha - \{0\} \neq 0 \). There exists \(y \in L_{-\alpha} \) such that \(\kappa(x, y) \neq 0 \).

Assume that \(\kappa(x, L_{-\alpha}) = 0 \). Then \(\kappa(x, L_\beta) = 0 \) for any \(\beta \in H^* \) hence \(\kappa(x, L) = 0 \) hence \(x = 0 \) absurd.

(e) Let \(\alpha \in R \). We have \(\alpha(t_\alpha) = \kappa(t_\alpha, t_\alpha) \neq 0 \).

The equality comes from the definition of \(t_\alpha \). Assume that \(\alpha(t_\alpha) = 0 \). Then \([t_\alpha, L_\alpha] = 0, [t_\alpha, L_{-\alpha}] = 0 \). Let \(x, y \) be as in (d). We can assume that \(\kappa(x, y) = 1 \). Then \([x, y] = t_\alpha \). Let \(S = kx + ky + kt_\alpha \), a Lie subalgebra of \(L \). We have \([S, S] = kt_\alpha, [kt_\alpha, kt_\alpha] = 0 \) hence \(S \) is solvable. By Lie’s theorem for \(ad : S \to End(L) \) we see that \(ad(x') : L \to L \) is nilpotent for any \(x' \in [S, S] \). In particular \(ad(t_\alpha) : L \to L \) is nilpotent. Since \(t_\alpha \in H \) and all elements of \(H \) are semisimple, we see that \(ad(t_\alpha) : L \to L \) is also semisimple hence is 0. Thus \(t_\alpha \in Z(L) = 0 \).

This contradicts \(t_\alpha \neq 0 \).

(f) Let \(\alpha \in R \). Let \(x \in L_\alpha, x \neq 0 \). We can find \(y \in L_{-\alpha} \) such that, setting \(h = [x, y] \in H \) we have \([h, x] = 2x, [h, y] = -2y \).

By (d),(e) we can find \(y \in L_{-\alpha} \) such that \(\kappa(x, y) = 2/\alpha(t_\alpha) \). Then \(h = 2t_\alpha/\alpha(t_\alpha) \). Hence

\[
[h, x] = \left(2/\alpha(t_\alpha)\right)t_\alpha, x = \left(2/\alpha(t_\alpha)\right)\alpha(t_\alpha)x = 2x,
\]

\[
[h, y] = \left(2/\alpha(t_\alpha)\right)[t_\alpha, y] = \left(2/\alpha(t_\alpha)\right)(-\alpha(t_\alpha)y) = -2y.
\]

(g) Let \(\alpha \in R \). Let \(x, y, h \) be as in (f). Then \(S = kx + ky + kh \) is a Lie subalgebra of \(L \) and \(e \to x, f \to y, h \to h \) is an isomorphism of Lie algebras \(sl_2(k) \sim S \).

This is clear.

(h) Let \(\alpha \in R \). Let \(h_\alpha = 2t_\alpha/\alpha(t_\alpha) \) (see (f)). We have \(h_\alpha = -h_{-\alpha} \).

It suffices to show that \(t_\alpha = -t_{-\alpha} \). Since \(\kappa|H \) is non-singular it suffices to show that, for any \(h \in H \) we have \(\kappa(h, t_\alpha) = -\kappa(h, t_{-\alpha}) \) or that \(\alpha(h) = -(\alpha(h)) \). This is clear.

(i) Let \(\alpha \in R \). Then \(2\alpha \notin R \).

Let \(x, y, h, S \) be as in (g). Let \(M = \bigoplus_{c \in \kappa L_\alpha} \) is an \(S \)-module under \(ad \) and \(h \) acts on \(L_\alpha \) as multiplication by \(c\alpha(h) = c\alpha(2t_\alpha)/\alpha(t_\alpha) = 2c \). By representation theory of \(sl_2(k) \) (see below) the eigenvalues of \(h : M \to M \) are integers. Hence \(M = \bigoplus_{c \in \kappa(1/2)Z} L_\alpha \). Now \(S + H \) is an \(S \)-submodule of \(M \). By Weyl, there exists an \(S \)-submodule \(M' \) of \(M \) such that \(M = (S + H) \oplus M' \). Now the 0-eigenspace of \(h : M \to M \) is \(L_0 = H \) hence it is contained in \(S + H \). Thus the 0-eigenspace of \(h : M' \to M' \) is 0. Hence \(h : M' \to M' \) does not have eigenvalues in \(2\mathbb{Z} \). The eigenvalues of \(h : S + H \to S + H \) are 0, 2, -2. We see that 4 is not an eigenvalue of \(h : M \to M \).
If we had $2\alpha \in R$ then a non-zero-vector in $L_{2\alpha}$ would be an eigenvector of $h : M \to M$ with eigenvalue 4, contradiction.

(j) Let $\alpha \in R$. Then $\alpha/2 \notin R$.

If we had $\alpha/2 \in R$ then applying (i) to $\alpha/2$ we would deduce that $\alpha \notin R$, contradiction.

(k) In (i) we have $M' = 0$.

From (j) we see that $L_{\alpha/2} = 0$ hence the 1-eigenspace of $h : M \to M$ is 0. Thus $h : M' \to M'$ has no eigenvalue 1 (nor 0, see (i)). Hence $h : M' \to M'$ has no odd or even eigenvalues. Hence $M' = 0$.

(l) Let $\alpha \in R$. We have $\dim L_{\alpha} = 1$. Moreover $c\alpha \in R, c \in k$ implies $c \in \{1, -1\}$.

Let x, y, h, S be as in (g). By (k) we have $\oplus_{c \in k} L_{c\alpha} = S + H$. The result follows.

(m) Let $\alpha, \beta \in R, \beta \neq \pm \alpha$. Let $h_\alpha = 2t_\alpha/\alpha(t_\alpha)$. Then $\beta(h_\alpha) \in Z$ and $\{n \in Z | \beta + n\alpha \in R\}$ is of the form $\{-r, -r + 1, \ldots, 0, \ldots, q - 1, q\}$ where $-r \leq 0 \leq q$.

Let x, y, h, S be as in (g). Then $h = h_\alpha$. Let $K = \oplus_{n \in Z} L_{\beta + n\alpha} \subset L$. This is an $S = sl_2(k)$-module under ad such that any eigenvalue of h on $L_{\beta + n\alpha}$ is $\beta(h_\alpha) + 2n$. For $n = 0$ the eigenvalue is $\beta(h_\alpha)$ and it has multiplicity 0 hence $\beta(h_\alpha) \in Z$. We see that all eigenvalues have multiplicity one and they all have the same parity. It follows that the S-module K is simple. (See below.) The result follows.

(n) Let $\alpha, \beta \in R, \beta \neq \pm \alpha$. Let $h_\alpha = 2t_\alpha/\alpha(t_\alpha)$. We have $\beta - \beta(h_\alpha)\alpha \in R$.

By (m), we have $\beta(h_\alpha) - 2r = -(\beta(h_\alpha) + 2q)$ that is $\beta(h_\alpha) = r - q$ and we must show that $-r \leq -\beta(h_\alpha) \leq q$ that is $-r \leq -r + q \leq q$. This is clear.

(o) If $\alpha, \beta, \alpha + \beta \in R$ then $[L_{\alpha}, L_{\beta}] = L_{\alpha + \beta}$.

Since $2\alpha \notin R$ we have $\beta \neq \pm \alpha$. Consider the irreducible $S = sl_2(k)$-module K in (m). With notations in (m) we have $L_\beta = (r - q)$-eigenspace of $h : K \to K$ and $L_{\alpha + \beta} = (r - q + 2)$-eigenspace of $h : K \to K$. It is enough to show that $e \in sl_2(k)$ maps the j-eigenspace of $h : K \to K$ onto the $(j + 2)$-eigenspace (if both these eigenspaces are 1-dimensional). This follows from the explicit description of simple $sl_2(k)$-modules (see below).

(p) The smallest Lie subalgebra L' of L that contains L_{α} for all $\alpha \in R$ is L itself.

It suffices to show that L' contains H. From (a) it follows that $\{t_\alpha | \alpha \in R\}$ spans H as a vector space. Hence it is enough to show that for $\alpha \in R$ we have $t_\alpha \in L'$. But by (c),(d) we have $t_\alpha \in [L_{\alpha}, L_{-\alpha}]$.

Rationality.

Define $(\cdot, \cdot) : H^* \times H^* \to k$ to be the symmetric bilinear form $(\xi, \xi') = \kappa(t_\xi, t_{\xi'}) = \sum_{\alpha \in R} \alpha(t_\xi)\alpha(t_{\xi'})$. This form is non-singular. For $\alpha \in R$ we have $(\xi, \alpha) = \kappa(t_\xi, t_{\alpha}) = \alpha(t_\xi)$. Hence $(\xi, \xi') = \sum_{\alpha \in R} (\xi, \alpha)(\xi', \alpha)$.

For $\alpha \in R$ we have $(\alpha, \alpha) = \kappa(t_\alpha, t_{\alpha}) \neq 0$. For $\alpha, \beta \in R$ we have $2(\alpha, \beta)/(\alpha, \alpha) = \kappa(2t_\alpha/\kappa(t_\alpha, t_{\alpha}), t_{\beta}) = \kappa(h_\alpha, t_{\beta}) = \beta(h_\alpha) \in Z$.

Now from $(\beta, \beta) = \sum_{\alpha \in R} (\beta, \alpha)^2$ we deduce $4(\beta, \beta)^{-1} = \sum_{\alpha \in R} (2(\beta, \alpha)/(\beta, \beta))^2 \in Z$. Thus $(\beta, \beta) \in Q$ hence $(\alpha, \beta) \in Q$ for any $\alpha, \beta \in R$.
Let E be the \mathbb{Q}-subspace of H^* spanned by R. Let $\alpha_1, \ldots, \alpha_n$ be a k-basis of H^* contained in R. We show that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q}-basis of E. Let $\alpha \in R$. We have $\alpha = \sum_{i=1}^n c_i \alpha_i$ with $c_i \in k$. It suffices to show that $c_i \in \mathbb{Q}$ for all i. For any $j \in [1, n]$ we have

$$2(\alpha, \alpha_j)/\langle \alpha_j, \alpha_j \rangle = \sum_{i=1}^n c_i 2(\alpha_i, \alpha_j)/\langle \alpha_j, \alpha_j \rangle.$$

This is a linear system of n equations with n unknowns c_i with non-zero determinant and integer coefficients. Hence $c_i \in \mathbb{Q}$ for all i. Hence E coincides with the \mathbb{Q}-subspace of H^* spanned by $\alpha_1, \ldots, \alpha_n$.

Let $\xi \in E, \xi \neq 0$. We have $\langle \xi, \xi \rangle = \sum_{\alpha \in R} \langle \xi, \alpha \rangle^2$. This is a rational number ≥ 0. If it 0 then $\langle \xi, \alpha \rangle = 0$ for all $\alpha \in R$ hence $\xi = 0$. Thus $(,)|_E$ has rational values and is positive definite.

We may summarize the properties of $R \subset E$ and $(,)|_E$ as follows:

R spans E as a \mathbb{Q}-vector space, $0 \notin R$. If $\alpha \in R$ then $-\alpha \in R$ but $c\alpha \notin R$ if $c \in \mathbb{Q} - \{1, -1\}$. If $\alpha, \beta \in R$ then $2(\beta, \alpha)/\langle \alpha, \alpha \rangle \in \mathbb{Z}$ and $\beta - 2(\beta, \alpha)/\langle \alpha, \alpha \rangle \alpha \in R$.