In this section the ground field k is arbitrary.

Let L be a Lie algebra. A pair (U, i) where U is an associative algebra and i is a Lie algebra homomorphism $L \rightarrow U$ is called a universal enveloping algebra of L if the following holds: if U' is any associative algebra and i' is a Lie algebra homomorphism $L \rightarrow U'$ then there exists a unique algebra homomorphism $f : U \rightarrow U'$ such that $i' = fi$.

Lemma. (a) Let $(U, i), (\tilde{U}, \tilde{i})$ be universal enveloping algebras of L. Then there exists a unique algebra isomorphism $j : U \iso U'$ such that $i = \tilde{i}j$.

(b) U is generated as an algebra by $i(L)$.

(c) Let L_1, L_2 be Lie algebras. Let $(U_1, i_1), (U_2, i_2)$ be universal enveloping algebras of L_1, L_2. Let $f : L_1 \rightarrow L_2$ be a Lie algebra homomorphism. Then there exists a unique algebra homomorphism $\tilde{f} : U_1 \rightarrow U_2$ such that $i_2f = \tilde{f}i_1$.

(d) Let I be an ideal of L and let \bar{I} be the ideal of U generated by $i(L)$. Then $i : L \rightarrow U$ induces a Lie algebra homomorphism $\bar{j} : L/\bar{I} \rightarrow U/\bar{I}$ and $(U/\bar{I}, \bar{j})$ is a universal enveloping algebra of L/\bar{I}.

(e) There is a unique algebra anti-automorphism $\pi : U \rightarrow U$ such that $\pi i = -i$. We have $\pi^2 = 1$.

(f) There is a unique algebra homomorphism $\delta : U \rightarrow U \otimes U$ such that $\delta (i(a)) = i(a) \otimes 1 + 1 \otimes i(a)$ for all $a \in L$.

(g) If $D : L \rightarrow L$ is a derivation then there is a unique derivation $D' : U \rightarrow U$ such that $iD = D'i$.

(a)-(f) are standard. We prove (g). Let U_2 be the algebra of 2×2 matrices with entries in U. Define a linear map $i' : L \rightarrow U_2$ by

$$a \mapsto i(a) \begin{pmatrix} i(D(a)) & 0 \\ 0 & i(a) \end{pmatrix}$$

This is a Lie algebra homomorphism:

$$i'([a, b]) = \begin{pmatrix} i(a)i(b) - i(b)i(a) & i(a)i(D(b)) + i(a)i(D(a)) - i(b)i(D(b)) - i(D(b))i(a) \\ 0 & i(a)i(b) - i(b)i(a) \end{pmatrix} = i'(a)i'(b) - i'(b)i'(a).$$
Hence there is an algebra homomorphism $j : U \to U_2$ such that $i' = ji$. We have $j(x) = \frac{xy}{0}$ for all $x \in U$ where y is uniquely determined by x. Indeed this is true for $x \in i(L)$ and these generate U. We set $y = D'(x)$ where $D' : U \to U$. Then D' is a derivation of U such that $iD = Di$.

Construction of a universal enveloping algebra. Let T be the tensor algebra of L. By definition, $T = T_0 \oplus T_1 \oplus T_2 \oplus \ldots$ where $T_0 = k1, T_1 = L$ and $T_i = L \otimes L \otimes \ldots L$ (i times). The algebra structure is characterize by

$$(x_1 \otimes \ldots \otimes x_i)(y_1 \otimes \ldots \otimes y_j) = x_1 \otimes \ldots \otimes x_i \otimes y_1 \otimes \ldots \otimes y_j.$$

Let K be the ideal of T generated by the elements of form $[a, b] = a \otimes b - b \otimes a$ with $a, b \in L$. Let $U = T/I$. Let $i : L \to U$ be the composition of the canonical maps $L \to T \to U$. We have

$i[a, b] - i(a)i(b) + i(b)i(a) = K - \text{coset of } [a, b] - a \otimes b + b \otimes a = K$.

Hence $i : L \to U$ is a Lie algebra homomorphism.

Proposition. (U, i) is a universal enveloping algebra of L.

Let $\{u_j | j \in J\}$ be a basis of the vector space L. The monomials $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ (where $j_1, j_2, \ldots, j_n \in J$) form a basis of T_n. We assume that J is ordered. Define

$\text{index}(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = \sum_{i < k} \eta_{ik}$

where $\eta_{ik} = 0$ if $j_i \leq j_k$ and $\eta_{ik} = 1$ if $j_i > j_k$. We have $\text{index}(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = 0$ if and only if $j_1 \leq j_2 \leq \ldots j_n$. In this case the monomial is said to be standard. We regard 1 as a standard monomial. Assume now that $j_k > j_{k+1}$; then

$\text{index}(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n})$

$= 1 + \text{index}(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n})$.

Lemma 1. Every element $x \in T$ is congruent modulo K to a linear combination of standard monomials.

We may assume that x is a monomial. We may assume that x has degree $n > 0$ and index p and that the result is true for monomials of degree $< n$ or for monomials of degree n and index $< p$. Assume $x = u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ is not standard and suppose $j_k > j_{k+1}$. We have

$u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$

$= u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}$

$+ u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes (u_{j_k} \otimes u_{j_{k+1}} - u_{j_{k+1}} \otimes u_{j_k}) \otimes \ldots \otimes u_{j_n}$

$= u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}$

$+ u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n} \mod K$.

The result follows from the induction hypothesis.

We now introduce the vector space P_n with basis $u_{i_1} u_{i_2} \ldots u_{i_n}$ indexed by the various $i_1 \leq i_2 \leq \ldots i_n$ in J. Let $P = P_0 \oplus P_1 \oplus P_2 \oplus \ldots$.
Lemma 2. There exists a linear map $\sigma : T \rightarrow P$ such that

(a) $\sigma(u_{i_1} \otimes u_{i_2} \otimes \ldots \otimes u_{i_n}) = u_{i_1} u_{i_2} \ldots u_{i_n}$ if $i_1 \leq i_2 \leq \ldots \leq i_n$,

(b) $\sigma(u_j \otimes u_{j_2} \otimes \ldots \otimes u_{j_n} - u_j \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n}) = \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n})$

for any $j_1, j_2, \ldots, j_n \in J$ and any k.

Let $T_{n,j}$ be the subspace of T_n spanned by the monomials of degree n and index $\leq j$. Define $\sigma(1) = 1$. Assume that σ is already defined on $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1}$ and it satisfies (a),(b) for monomials of degree $< n$. We extend σ linearly to $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1} \oplus T_{n,0}$ by requiring that $\sigma(u_{i_1} \otimes u_{i_2} \otimes \ldots \otimes u_{i_n}) = u_{i_1} u_{i_2} \ldots u_{i_n}$ for a standard monomial of degree n. Now assume that $i \geq 1$ and that σ has already been defined on $T_0 \oplus T_1 \oplus \ldots \oplus T_{n-1} \oplus T_{n,i-1}$ so that (a),(b) is satisfied for monomials of degree of degree $< n - 1$ or for monomials of degree n and index $< i$. Now let $u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}$ be of index i. Suppose that $j_k > j_{k+1}$. We set

(*) $\sigma(u_j \otimes u_{j_2} \otimes \ldots \otimes u_{j_n}) = \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_{k+1}} \otimes u_{j_k} \otimes \ldots \otimes u_{j_n} + \sigma(u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n})$.

This makes sense. We show that (*) is independent of the choice of the pair $j_k > j_{k+1}$. Assume that we have another pair $j_l > j_{l+1}$. There are two cases: (1) $l > k + 1$, (2) $l = k + 1$.

Case (1). We set $u_{j_k} = u, u_{j_{k+1}} = v, u_{j_l} = w, u_{j_{l+1}} = t$. By the first definition

$$\begin{align*}
\sigma(u \otimes v \otimes \ldots \otimes w \otimes t) & = \sigma(\ldots v \otimes u \otimes \ldots \otimes w \otimes t \ldots) + [u, v] \otimes \ldots \otimes [u, v] \otimes w \otimes t \ldots) \\
& = \sigma(\ldots v \otimes u \otimes \ldots \otimes t \otimes w \ldots + v \otimes u \otimes \ldots \otimes [w, t] \ldots) \\
& + [u, v] \otimes \ldots \otimes t \otimes w \ldots + [u, v] \otimes \ldots \otimes [w, t] \ldots).
\end{align*}$$

The second definition leads to the same expression.

Case (2). We set $u_{j_k} = u, u_{j_{k+1}} = v = u_{j_l}, u_{j_{l+1}} = w$. By the first definition

$$\begin{align*}
\sigma(u \otimes v \otimes w \ldots) & = \sigma(\ldots v \otimes u \otimes w \ldots + [u, v] \otimes w \ldots) \\
& = \sigma(\ldots v \otimes w \otimes u \ldots + v \otimes [u, w] \ldots + [u, v] \otimes w \ldots) \\
& = \sigma(\ldots w \otimes v \otimes u \ldots + [v, w] \otimes u \ldots + v \otimes [u, w] \ldots + [u, v] \otimes w \ldots).
\end{align*}$$

By the second definition

$$\begin{align*}
\sigma(u \otimes v \otimes w \ldots) & = \sigma(u \otimes w \otimes v \ldots + u \otimes [v, w] \ldots) \\
& = \sigma(\ldots w \otimes u \otimes v \ldots + [u, w] \otimes v \ldots + u \otimes [v, w] \ldots) \\
& = \sigma(\ldots w \otimes v \otimes u \ldots + w \otimes [u, v] \ldots + [u, w] \otimes v \ldots + u \otimes [v, w] \ldots).
\end{align*}$$

Thus we are reduced to proving

$$\begin{align*}
\sigma([v, w] \otimes u \ldots + [v, u, w] \ldots + [u, v] \otimes w \ldots) & = \sigma(\ldots w \otimes [u, v] \ldots + [u, w] \otimes v \ldots + u \otimes [v, w] \ldots) \\
& = [v, w] \otimes u \ldots + [v, u, w] \ldots + [u, v] \otimes w \ldots)
\end{align*}$$

or equivalently $\sigma([v, w], u] \ldots + [v, u, w] \ldots + [u, v, w] \ldots) = 0$.

which follows from $[[v, w], u] + [v, [u, w]] = [[u, v], w] = 0$. The lemma is proved.
Theorem (Poincaré-Birkhoff-Witt). The standard monomials form a basis of \(U = T/K \).

By lemma 1 the standard monomials span \(U \). Now \(K \) is spanned by elements of the form
\[
 u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_n} - u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes u_{j_k} \otimes \ldots \otimes u_{j_n} - u_{j_1} \otimes u_{j_2} \otimes \ldots \otimes [u_{j_k}, u_{j_{k+1}}] \otimes \ldots \otimes u_{j_n},
\]
hence \(\sigma(K) = 0 \) and \(\sigma \) induces a linear map \(U \to P \). This linear map takes the standard monomials to linearly independent elements of \(P \). Hence the standard monomials are linearly independent in \(U \).

Corollary. The map \(i : L \to U \) is injective.

Free Lie algebra. Let \(X \) be a set. The free Lie algebra generated by \(X \) is a pair \((F, i)\) where \(F \) is a Lie algebra and \(i : X \to F \) is a map such that, if \(i' : X \to F' \) is a map of \(X \) into a Lie algebra, there is a unique Lie algebra homomorphism \(j : F \to F' \) such that \(i' = ji \). We show the existence of \((F, i)\). Let \(V \) be the vector space with basis \(X \). Let \(T \) be the tensor algebra of \(V \). Let \(F \) be the Lie subalgebra of \(T \) generated by \(X \). Then \(i \) is the obvious imbedding \(X \subset F \). Let \(i' : X \to F' \) be a map into a Lie algebra. This extends to a linear map \(V \to F' \). Let \(h : F' \to U' \) be the enveloping algebra of \(F' \). The composition \(V \to F' \xrightarrow{h} U' \) extends to an algebra homomorphism \(T \to U' \) and this restricts to a Lie algebra homomorphism \(a : F \to U' \). Now \(a(X) \subset h(F') \). Since \(F \) is generated by \(X \) as a Lie algebra, and \(h(F') \) is a Lie subalgebra, we see that \(a(F) \subset h(F') \). Since \(h \) is injective (by the PBW theorem) there exists a unique homomorphism of Lie algebras \(j : F \to F' \) such that \(F \xrightarrow{a} U' \) is equal to \(F \xrightarrow{j} F' \xrightarrow{h} U' \). This shows that \((F, i)\) is the free Lie algebra generated by \(X \).

\(\mathfrak{sl}_2(k) \)-modules

Let \(L = \mathfrak{sl}_2(k) \). A basis is given by
\[
e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

We have \([e, f] = h, [h, e] = 2e, [h, f] = -2f \). Thus, \(h \) is semisimple. Since \(L \) is simple, it is semisimple. Let \(V \) be an \(L \)-module, \(\dim V < \infty \). Then \(h : V \to V \) is semisimple. Thus \(V = \bigoplus_{\lambda \in k} V_{\lambda} \) where \(V_{\lambda} = \{v \in V | hv = \lambda v\} \).

If \(v \in V_{\lambda} \) then \(ev \in V_{\lambda+2}, fv \in V_{\lambda-2} \).

Assume now that \(V \) is irreducible. We can find \(v_0 \in V - \{0\} \) such that \(v_0 \in V_{\lambda}, ev_0 = 0 \). Set \(v_{-1} = 0, v_n = \frac{f^n}{n!} v_0, n \in \mathbb{N} \). We have
(a) \(hv_n = (\lambda - 2n)v_n \) for \(n \geq -1 \)
(b) \(fv_n = (n + 1)v_{n+1} \) for \(n \geq -1 \)
(c) $e v_n = (\lambda - n + 1)v_{n-1}$ for $n \geq 0$.

(c) is shown by induction on n. For $n = 0$ it is clear. Assuming $n \geq 1$,

\[
e v_n = n^{-1}e f v_{n-1} = n^{-1}h v_{n-1} + n^{-1}f e v_{n-1}
= n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}f(\lambda - n + 2)v_{n-2}
= n^{-1}(\lambda - 2n + 2)v_{n-1} + n^{-1}(\lambda - n + 2)(n-1)v_{n-1} = (\lambda - n + 1)v_{n-1}.
\]

By (a), the non-zero v_n are linearly independent. Since $\dim V < \infty$, there exists $m \geq 0$ such that v_0, v_1, \ldots, v_m are $\neq 0$ and $v_{m+1} = 0$. Then $v_{m+2} = v_{m+3} = \cdots = 0$. Now v_0, v_1, \ldots, v_m form a basis of an L-submodule which must be the whole of V. Now (c) with $n = m + 1$ gives $0 = (\lambda - m)v_n$ hence $\lambda = n$. Thus the action of e, f, h in the basis v_0, v_1, \ldots, v_m is

\[
h v_n = (m - 2n)v_n \text{ for } n \in [0, m]
f v_n = (n + 1)v_{n+1} \text{ for } n \in [0, m]
e v_n = (m - n + 1)v_{n-1} \text{ for } n \in [0, m]
\]
with the convention $v_{-1} = 0, v_{m+1} = 0$.

Conversely, given $m \geq 0$ we can define an L-module structure on an $m + 1$ dimensional vector space with basis v_0, v_1, \ldots, v_m by the formulas above. Thus we have a 1-1 correspondence between the set of isomorphism classes of irreducible L-modules and the set \mathbb{N}.

Now let V be any finite dimensional L-module. Then:

(a) the eigenvalues of $h : V \to V$ are integers; the multiplicity of the eigenvalue a equals that of $-a$.

(b) If $h : V \to V$ has an eigenvalue in $2\mathbb{Z}$ then it has an eigenvalue 0.

(c) If $h : V \to V$ has an eigenvalue in $2\mathbb{Z} + 1$ then it has an eigenvalue 1.

Indeed, by Weyl, we are reduced to the case where V is irreducible; in that case we use the explicit description of L given above.

A property of \mathfrak{sl}_2-modules

Let V be a \mathfrak{sl}_2-module such that $e : V \to V, f : V \to V$ are locally nilpotent. Then $\exp(e) : V \to V, \exp(-f) : V \to V$ are well defined isomorphisms. Hence $\tau = \exp(e) \exp(-f) \exp(e) : V \to V$ is a well defined isomorphism. For any integer n let $V_n = \{x \in V | hx = nx\}$. Assume that $V = \oplus_n V_n$

Lemma. $\tau(V_n) \subset V_{-n}$.

Step 1. Assume that V has a basis ξ, η where $e \xi = 0, e \eta = \xi, f \xi = \eta, f \eta = 0, h \xi = \xi, h \eta = -\eta$.
We have $V = V_1 \oplus V_{-1}$ and $\exp(e) \xi = \xi, \exp(e) \eta = \eta = \xi, \exp(-f) \xi = \xi - \eta, \exp(-f) \eta = \eta$. It follows that $\tau(\xi) = -\eta, \tau(\eta) = \xi$. hence the result follows in this case.

Step 2. Assume that the result holds for V and for V'. We show that it holds for $V \otimes V'$ where $x \in \mathfrak{sl}_2$ acts as $x \otimes 1 + 1 \otimes x$.
A simple computation shows that for $x \in \mathfrak{sl}_2$, locally nilpotent, $\exp(x)$ acts on $V \otimes V'$ as $\exp(x) \otimes \exp(x)$. Hence τ acts on $V \otimes V'$ as $\tau \otimes \tau$. The result follows easily.

Step 3. If the result holds for V then it holds for any direct summand of V (as a \mathfrak{sl}_2-module).

(Obvious.)

Step 4. The result holds when V is the irreducible module of dimension n.

(Induction on n.) This is obvious for $n = 1$ and is true for $n = 2$ by Step 1. Assume now that $n \geq 3$. Then V is a direct summand of $V' \otimes V''$ where V' is an irreducible module of dimension $n - 1$ and V'' is an irreducible module of dimension 2. By the induction hypothesis, the result holds for V', V'' hence it holds for $V' \otimes V''$ by Step 2 and for V by Step 3.

Step 5. The result holds when $\dim V < \infty$.

Follows from the complete reducibility of V and Step 4.

Step 6. The result holds in general.

Let $x \in V_n$. Let N, N' be such that $e^{N+1}x = 0, f^{N'+1}x = 0$. The subspace of V spanned by $f^i e^j x$ with $0 \leq j \leq N, 0 \leq i \leq N + N'$ is easily seen to be an \mathfrak{sl}_2-submodule V'. We have $\dim V' < \infty$. By Step 5 the result holds for V'. Hence $\tau(x) \in V_{-n}$.