MATRIX FACTORIZATIONS

1. \(A = LU = \begin{pmatrix} \text{lower triangular } L \\ 1's \text{ on the diagonal} \end{pmatrix} \begin{pmatrix} \text{upper triangular } U \\ \text{pivots on the diagonal} \end{pmatrix} \)

Requirements: No row exchanges as Gaussian elimination reduces square \(A \) to \(U \).

2. \(A = LDU = \begin{pmatrix} \text{lower triangular } L \\ 1's \text{ on the diagonal} \end{pmatrix} \begin{pmatrix} \text{pivot matrix } D \\ \text{is diagonal} \end{pmatrix} \begin{pmatrix} \text{upper triangular } U \\ 1's \text{ on the diagonal} \end{pmatrix} \)

Requirements: No row exchanges. The pivots in \(D \) are divided out to leave 1's on the diagonal of \(U \). If \(A \) is symmetric then \(U = L^T \) and \(A = LDL^T \).

3. \(PA = LU \) (permutation matrix \(P \) to avoid zeros in the pivot positions).

Requirements: \(A \) is invertible. Then \(P, L, U \) are invertible. \(P \) does all of the row exchanges on \(A \) in advance, to allow normal \(LU \). Alternative: \(A = L_1 P_1 U_1 \).

4. \(EA = R \) (\(m \) by \(m \) invertible \(E \)) (any \(m \) by \(n \) matrix \(A \)) = \text{rref}(A).

Requirements: None! The reduced row echelon form \(R \) has \(r \) pivot rows and pivot columns, containing the identity matrix. The last \(m - r \) rows of \(E \) are a basis for the left nullspace of \(A \); they multiply \(A \) to give \(m - r \) zero rows in \(R \). The first \(r \) columns of \(E^{-1} \) are a basis for the column space of \(A \).

5. \(S = C^T C = \begin{pmatrix} \text{lower triangular} \\ \text{upper triangular} \end{pmatrix} \) with \(\sqrt{D} \) on both diagonals

Requirements: \(S \) is symmetric and positive definite (all \(n \) pivots in \(D \) are positive). This Cholesky factorization \(C = \text{chol}(S) \) has \(C^T = L \sqrt{D} \), so \(S = C^T C = LDL^T \).

6. \(A = QR = \) (orthonormal columns in \(Q \)) (upper triangular \(R \)).

Requirements: \(A \) has independent columns. Those are orthogonalized in \(Q \) by the Gram-Schmidt or Householder process. If \(A \) is square then \(Q^{-1} = Q^T \).

7. \(A = X \Lambda X^{-1} = \) (eigenvectors in \(X \)) (eigenvalues in \(\Lambda \)) (left eigenvectors in \(X^{-1} \)).

Requirements: \(A \) must have \(n \) linearly independent eigenvectors.

8. \(S = Q \Lambda Q^T = \) (orthogonal matrix \(Q \)) (real eigenvalue matrix \(\Lambda \)) (\(Q^T \) is \(Q^{-1} \)).

Requirements: \(S \) is real and symmetric: \(S^T = S \). This is the Spectral Theorem.
9. \(A = BJB^{-1} = (\text{generalized eigenvectors in } B) \) (Jordan blocks in \(J \)) (\(B^{-1} \)).

Requirements: \(A \) is any square matrix. This Jordan form \(J \) has a block for each independent eigenvector of \(A \). Every block has only one eigenvalue.

10. \(A = U\Sigma V^T = \begin{pmatrix} \text{orthogonal} & \text{orthogonal} \\ U \text{ is } m \times m & V \text{ is } n \times n \end{pmatrix} \begin{pmatrix} \text{m} \times \text{n singular value matrix} \\ \sigma_1, \ldots, \sigma_r \text{ on its diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ \text{1/\(\sigma_1 \), \ldots, 1/\(\sigma_r \) on diagonal} \end{pmatrix} \).

Requirements: None. This Singular Value Decomposition (SVD) has the eigenvectors of \(AA^T \) in \(U \) and eigenvectors of \(A^T A \) in \(V \); \(\sigma_i = \sqrt{\lambda_i(AA^T)} = \sqrt{\lambda_i(A^TA)} \).

11. \(A^+ = V\Sigma^+U^T = \begin{pmatrix} \text{orthogonal} & \text{orthogonal} \\ n \times n & m \times m \end{pmatrix} \begin{pmatrix} \text{n} \times \text{m pseudoinverse of } \Sigma \\ 1/\sigma_1, \ldots, 1/\sigma_r \text{ on diagonal} \end{pmatrix} \).

Requirements: None. The pseudoinverse \(A^+ \) has \(A^+A = \text{projection onto row space of } A \) and \(AA^+ = \text{projection onto column space} \). \(A^+ = A^{-1} \) if \(A \) is invertible. The shortest least-squares solution to \(Ax = b \) is \(x^+ = A^+b \). This solves \(A^TAx^+ = A^Tb \).

12. \(A = QS = (\text{orthogonal matrix } Q) \) (symmetric positive definite matrix \(S \)).

Requirements: \(A \) is invertible. This polar decomposition has \(S^2 = A^TA \). The factor \(S \) is semidefinite if \(A \) is singular. The reverse polar decomposition \(A = KQ \) has \(K^2 = AA^T \). Both have \(Q = UV^T \) from the SVD.

13. \(A = UAU^{-1} = (\text{unitary } U) \) (eigenvalue matrix \(\Lambda \)) (\(U^{-1} \) which is \(U^H = U^T \)).

Requirements: \(A \) is normal: \(A^HA = AA^H \). Its orthonormal (and possibly complex) eigenvectors are the columns of \(U \). Complex \(\lambda \)'s unless \(S = S^H \): Hermitian case.

14. \(A = QTQ^{-1} = (\text{unitary } Q) \) (triangular \(T \) with \(\lambda \)'s on diagonal) \((Q^{-1} = Q^H) \).

Requirements: Schur triangularization of any square \(A \). There is a matrix \(Q \) with orthonormal columns that makes \(Q^{-1}AQ \) triangular: Section 6.4.

15. \(F_n = \begin{bmatrix} I & D \\ I & -D \end{bmatrix} \begin{bmatrix} F_{n/2} \\ F_{n/2} \end{bmatrix} \sqrt{\text{even-odd permutation}} = \text{one step of the recursive FFT} \).

Requirements: \(F_n \) = Fourier matrix with entries \(w^{jk} \) where \(w^n = 1 \): \(F_nF_n^T = nI \). \(D \) has \(1, w, \ldots, w^{n/2-1} \) on its diagonal. For \(n = 2^\ell \) the Fast Fourier Transform will compute \(F_nx \) with only \(\frac{1}{2} n\ell = \frac{1}{2} n \log_2 n \) multiplications from \(\ell \) stages of \(D \)’s.