Six Great Theorems of Linear Algebra

Dimension Theorem All bases for a vector space have the same number of vectors.

Counting Theorem Dimension of column space + dimension of nullspace = number of columns.

Rank Theorem Dimension of column space = dimension of row space. This is the rank.

Fundamental Theorem The row space and nullspace of \(A \) are orthogonal complements in \(\mathbb{R}^n \).

SVD There are orthonormal bases (\(v \)'s and \(u \)'s for the row and column spaces) so that \(Av_i = \sigma_i u_i \).

Spectral Theorem If \(A^T = A \) there are orthonormal \(q \)'s so that \(Aq_i = \lambda_i q_i \) and \(A = Q \Lambda Q^T \).

LINEAR ALGEBRA IN A NUTSHELL

Nonsingular
- \(A \) is invertible
- The columns are independent
- The rows are independent
- The determinant is not zero
- \(Ax = 0 \) has one solution \(x = 0 \)
- \(Ax = b \) has one solution \(x = A^{-1}b \)
- \(A \) has \(n \) (nonzero) pivots
- \(A \) has full rank \(r = n \)
- The reduced row echelon form is \(R = I \)
- The column space is all of \(\mathbb{R}^n \)
- The row space is all of \(\mathbb{R}^n \)
- All eigenvalues are nonzero
- \(A^T A \) is symmetric positive definite
- \(A \) has \(n \) (positive) singular values

Singular
- \(A \) is not invertible
- The columns are dependent
- The rows are dependent
- The determinant is zero
- \(Ax = 0 \) has infinitely many solutions
- \(Ax = b \) has no solution or infinitely many
- \(A \) has \(r < n \) pivots
- \(A \) has rank \(r < n \)
- \(R \) has at least one zero row
- The column space has dimension \(r < n \)
- The row space has dimension \(r < n \)
- Zero is an eigenvalue of \(A \)
- \(A^T A \) is only semidefinite
- \(A \) has \(r < n \) singular values