Problem Set 8.1, page 407

1 With \(w = 0 \) linearity gives \(T(v + 0) = T(v) + T(0) \). Thus \(T(0) = 0 \). With \(c = -1 \) linearity gives \(T(-0) = -T(0) \). This is a second proof that \(T(0) = 0 \).

2 Combining \(T(cv) = cT(v) \) and \(T(dw) = dT(w) \) with addition gives \(T(cv + dw) = cT(v) + dT(w) \). Then one more addition gives \(cT(v) + dT(w) + eT(u) \).

3 (d) is not linear.

4 (a) \(S(T(v)) = v \) (b) \(S(T(v_1) + T(v_2)) = S(T(v_1)) + S(T(v_2)) \).

5 Choose \(v = (1, 1) \) and \(w = (-1, 0) \). Then \(T(v) + T(w) = (v + w) \) but \(T(v + w) = (0, 0) \).

6 (a) \(T(v) = v/\|v\| \) does not satisfy \(T(v + w) = T(v) + T(w) \) or \(T(cv) = cT(v) \) (b) and (c) are linear (d) satisfies \(T(cv) = cT(v) \).

7 (a) \(T(T(v)) = v \) (b) \(T(T(v)) = v + (2, 2) \) (c) \(T(T(v)) = -v \) (d) \(T(T(v)) = T(v) \).

8 (a) The range of \(T(v_1, v_2) = (v_1 - v_2, 0) \) is the line of vectors \((c, 0) \). The nullspace is the line of vectors \((c, c) \). (b) \(T(v_1, v_2, v_3) = (v_1, v_2) \) has Range \(\mathbb{R}^2 \), kernel \(\{(0, 0, v_3)\} \) (c) \(T(v) = 0 \) has Range \(\{0\} \), kernel \(\mathbb{R}^2 \) (d) \(T(v_1, v_2) = (v_1, v_1) \) has Range = multiples of \((1, 1) \), kernel = multiples of \((1, -1) \).

9 If \(T(v_1, v_2, v_3) = (v_2, v_3, v_1) \) then \(T(T(v)) = (v_3, v_1, v_2) \), \(T^3(v) = v \), \(T^{100}(v) = T(v) \).

10 (a) \(T(1, 0) = 0 \) (b) \((0, 0, 1) \) is not in the range (c) \(T(0, 1) = 0 \).

11 For multiplication \(T(v) = Av \): \(V = \mathbb{R}^n \), \(W = \mathbb{R}^m \); the outputs fill the column space; \(v \) is in the kernel if \(Av = 0 \).

12 \(T(v) = (4, 4); (2, 2); (2, 2) \); if \(v = (a, b) = b(1, 1) + \frac{a-b}{2}(2, 0) \) then \(T(v) = b(2, 2) + (0, 0) \).

13 The distributive law (page 69) gives \(A(M_1 + M_2) = AM_1 + AM_2 \). The distributive law over \(c \)'s gives \(A(cM) = c(AM) \).
This A is invertible. Multiply $AM = 0$ and $AM = B$ by A^{-1} to get $M = 0$ and $M = A^{-1}B$. The kernel contains only the zero matrix $M = 0$.

This A is not invertible. $AM = I$ is impossible.

No matrix A gives $A \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. To professors: Linear transformations on matrix space come from 4 by 4 matrices. Those in Problems 13–15 were special.

For $T(M) = MT$ (a) $T^2 = I$ is True (b) True (c) True (d) False.

$T(I) = 0$ but $M = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = T(M)$; these M's fill the range. Every $M = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$ is in the kernel. Notice that dim (range) + dim (kernel) = 3 + 1 = dim (input space of 2 by 2 M's).

$T(T^{-1}(M)) = M$ so $T^{-1}(M) = A^{-1}MB^{-1}$.

(a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes onto a line (c) Vertical lines stay vertical because $T(1, 0) = (a_{11}, 0)$.

$D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ doubles the width of the house. $A = \begin{bmatrix} .7 & .7 \\ .3 & .3 \end{bmatrix}$ projects the house (since $A^2 = A$ from trace = 1 and $\lambda = 0, 1$). The projection is onto the column space of $A = \text{line through (.7, .3)}$. $U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ will shear the house horizontally: The point at (x, y) moves over to $(x + y, y)$.

(a) $A = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ with $d > 0$ leaves the house AH sitting straight up (b) $A = 3I$ expands the house by 3 (c) $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates the house.

$T(v) = -v$ rotates the house by 180° around the origin. Then the affine transformation $T(v) = -v + (1, 0)$ shifts the rotated house one unit to the right.

A code to add a chimney will be gratefully received!
25 This code needs a correction: add spaces between $-10\ 10\ -10\ 10$

26 The matrix $\begin{bmatrix} 1 & 0 \\ 0 & .1 \end{bmatrix}$ compresses vertical distances by 10 to 1. The matrix $\begin{bmatrix} .5 & .5 \\ .5 & .5 \end{bmatrix}$ projects onto the 45° line. The matrix $\begin{bmatrix} .5 & .5 \\ -.5 & .5 \end{bmatrix}$ rotates by 45° clockwise and contracts by a factor of $\sqrt{2}$ (the columns have length $1/\sqrt{2}$). The matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ has determinant -1 so the house is “flipped and sheared.” One way to see this is to factor the matrix as LDL^T:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \text{(shear)} \text{ (flip left-right)} \text{ (shear)}.$$

27 Also 30 emphasizes that circles are transformed to ellipses (see figure in Section 6.7).

28 A code that adds two eyes and a smile will be included here with public credit given!

29 (a) $ad - bc = 0$ (b) $ad - bc > 0$ (c) $|ad - bc| = 1$. If vectors to two corners transform to themselves then by linearity $T = I$. (Fails if one corner is $(0, 0)$.)

30 Linear transformations keep straight lines straight! And two parallel edges of a square (edges differing by a fixed v) go to two parallel edges (edges differing by $T(v)$). So the output is a parallelogram.

Problem Set 8.2, page 418

For $Sv = d^2v/dx^2$

1 $v_1, v_2, v_3, v_4 = 1, x, x^2, x^3$

The matrix for S is $B = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

2 $Sv = d^2v/dx^2 = 0$ for linear functions $v(x) = a + bx$. All $(a, b, 0, 0)$ are in the nullspace of the second derivative matrix B.

3 $(\text{Matrix } A)^2 = B$ when (transformation $T)^2 = S$ and output basis = input basis.
4 The third derivative matrix has 6 in the (1, 4) position; since the third derivative of \(x^3 \) is 6. This matrix also comes from \(AB \). The fourth derivative of a cubic is zero, and \(B^2 \) is the zero matrix.

5 \(T(v_1 + v_2 + v_3) = 2w_1 + w_2 + 2w_3; A \) times (1, 1, 1) gives (2, 1, 2).

6 \(v = c(v_2 - v_3) \) gives \(T(v) = 0 \); nullspace is (0, c, −c); solutions (1, 0, 0) + (0, c, −c).

7 (1, 0, 0) is not in the column space of the matrix \(A \), and \(w_1 \) is not in the range of the linear transformation \(T \). Key point: Column space of matrix matches range of transformation.

8 We don’t know \(T(w) \) unless the \(w \)’s are the same as the \(v \)’s. In that case the matrix is \(A^2 \).

9 Rank of \(A = 2 \) = dimension of the range of \(T \). The outputs \(Av \) (column space) match the outputs \(T(v) \) (the range of \(T \)). The “output space” \(W \) is like \(\mathbb{R}^m \); it contains all outputs but may not be filled up.

10 The matrix for \(T \) is \(A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \). For the output \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \) choose input \(v = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \).

\[A^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \] This means: For the output \(w_1 \) choose the input \(v_1 - v_2 \).

11 \(A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \) so \(T^{-1}(w_1) = v_1 - v_2, T^{-1}(w_2) = v_2 - v_3, T^{-1}(w_3) = v_3 \). The columns of \(A^{-1} \) describe \(T^{-1} \) from \(W \) back to \(V \). The only solution to \(T(v) = 0 \) is \(v = 0 \).

12 (c) \(T^{-1}(T(w_1)) = w_1 \) is wrong because \(w_1 \) is not generally in the input space.

13 (a) \(T(v_1) = v_2, T(v_2) = v_1 \) is its own inverse (b) \(T(v_1) = v_1, T(v_2) = 0 \) has \(T^2 = T \) (c) If \(T^2 = I \) for part (a) and \(T^2 = T \) for part (b), then \(T \) must be \(I \).
Solutions to Exercises

14 (a) \[
\begin{bmatrix}
2 & 1 \\
5 & 3
\end{bmatrix}
\] (b) \[
\begin{bmatrix}
3 & -1 \\
-5 & 2
\end{bmatrix}
\] = inverse of (a) (c) \[
\begin{bmatrix}
2 \\
6
\end{bmatrix}
\] must be \[
2 \begin{bmatrix}
1 \\
3
\end{bmatrix}
\].

15 (a) \[
M = \begin{bmatrix}
r & s \\
t & u
\end{bmatrix}
\]
transforms \[
\begin{bmatrix} 1 \\ 0 \end{bmatrix}
\] and \[
\begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
to \[
\begin{bmatrix} r \\ t \end{bmatrix}
\] and \[
\begin{bmatrix} s \\ u \end{bmatrix}
\]; this is the “easy” direction. (b) \[
N = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}^{-1}
\]
transforms in the inverse direction, back to the standard basis vectors. (c) \(ad = bc\) will make the forward matrix singular and the inverse impossible.

16 \[
MW = \begin{bmatrix}
1 & 0 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
5 & 3
\end{bmatrix}^{-1}
= \begin{bmatrix}
3 & -1 \\
-7 & 3
\end{bmatrix}.
\]

17 Recording basis vectors is done by a Permutation matrix. Changing lengths is done by a positive diagonal matrix.

18 \((a, b) = (\cos \theta, -\sin \theta)\). Minus sign from \(Q^{-1} = Q^T\).

19 \[
M = \begin{bmatrix}
1 & 1 \\
4 & 5
\end{bmatrix}; \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \end{bmatrix} = \text{first column of } M^{-1} = \text{coordinates of } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ in basis}
\begin{bmatrix}
1 \\
4
\end{bmatrix}.
\]

20 \(w_2(x) = 1 - x^2; w_3(x) = \frac{1}{2}(x^2 - x); y = 4w_1 + 5w_2 + 6w_3\).

21 \(w\)’s to \(v\)’s: \[
\begin{bmatrix}
0 & 1 & 0 \\
.5 & 0 & -.5 \\
.5 & -1 & .5
\end{bmatrix}
\] . \(v\)’s to \(w\)’s: inverse matrix = \[
\begin{bmatrix}
1 & 0 & 0 \\
1 & -1 & 1
\end{bmatrix}
\]. The key idea: The matrix multiplies the coordinates in the \(v\) basis to give the coordinates in the \(w\) basis.

22 The 3 equations to match \(4, 5, 6\) at \(x = a, b, c\) are \[
\begin{bmatrix}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C
\end{bmatrix}
= \begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}.
\] This Vandermonde determinant equals \((b - a)(c - a)(c - b)\). So \(a, b, c\) must be distinct to have \(\det \neq 0\) and one solution \(A, B, C\).
23 The matrix M with these nine entries must be invertible.

24 Start from $A = QR$. Column 2 is $a_2 = r_{12}q_1 + r_{22}q_2$. This gives a_2 as a combination of the q's. So the change of basis matrix is R.

25 Start from $A = LU$. Row 2 of A is $\ell_{21}(row 1 of U) + \ell_{22} (row 2 of U)$. The change of basis matrix is always invertible, because basis goes to basis.

26 The matrix for $T(\mathbf{v}_1) = \lambda_i \mathbf{v}_1$ is $\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

27 If T is not invertible, $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)$ is not a basis. We couldn’t choose $\mathbf{w}_1 = T(\mathbf{v}_1)$.

28 (a) $\begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$ gives $T(\mathbf{v}_1) = 0$ and $T(\mathbf{v}_2) = 3\mathbf{v}_1$. (b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ gives $T(\mathbf{v}_1) = \mathbf{v}_1$ and $\bar{T}(\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{v}_1$ (which combine into $T(\mathbf{v}_2) = 0$ by linearity).

29 $T(x, y) = (x, -y)$ is reflection across the x-axis. Then reflect across the y-axis to get $S(x, -y) = (-x, -y)$. Thus $ST = -I$.

30 S takes (x, y) to $(-x, y)$. $S(T(\mathbf{v})) = (-1, 2)$. $S(\mathbf{v}) = (-2, 1)$ and $T(S(\mathbf{v})) = (1, -2)$.

31 Multiply the two reflections to get $\begin{bmatrix} \cos 2(\theta - \alpha) & -\sin 2(\theta - \alpha) \\ \sin 2(\theta - \alpha) & \cos 2(\theta - \alpha) \end{bmatrix}$ which is rotation by $2(\theta - \alpha)$. In words: $(1, 0)$ is reflected to have angle 2α, and that is reflected again to angle $2\theta - 2\alpha$.

32 The matrix for T in this basis is $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

33 Multiplying by $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ gives $T(\mathbf{v}_1) = A \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \\ c \\ 0 \end{bmatrix} = a\mathbf{v}_1 + c\mathbf{v}_3$. Similarly $T(\mathbf{v}_2) = a\mathbf{v}_2 + c\mathbf{v}_4$ and $T(\mathbf{v}_3) = b\mathbf{v}_1 + d\mathbf{v}_3$ and $T(\mathbf{v}_4) = b\mathbf{v}_2 + d\mathbf{v}_4$. The matrix for T in this basis is $\begin{bmatrix} a & b & 0 & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{bmatrix}$.

34 False: We will not know $T(\mathbf{v})$ for energy \mathbf{v} unless the $n\mathbf{v}$’s are linearly independent.
Problem Set 8.3, page 429

1. For this matrix J, the rank of $J - 3I$ is 3 so the dimension of the nullspace is only 1. There is only 1 independent eigenvector even though $\lambda = 3$ is a double root of $\det(J - \lambda I) = 0$: a repeated eigenvalue.

\[
J = \begin{bmatrix}
2 \\
3 \\
3
\end{bmatrix}.
\]

2. $J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is similar to all other 2 by 2 matrices A that have 2 zero eigenvalues but only 1 independent eigenvector. Then $J = B_1^{-1}A_1B_1$ is the same as $B_1J = A_1B_1:

\[
B_1J = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 0 & 0 \end{bmatrix} = A_1B_1
\]

\[
B_2J = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -8 \\ 2 & -4 \end{bmatrix} = A_2B_2
\]

3. Every matrix is similar to its transpose (same eigenvalues, same multiplicity, more than that the same Jordan form). In this example

\[
BJ = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} = J^T B.
\]

4. Here J and K are different Jordan forms (block sizes 2, 2 versus block sizes 3, 1). Even though J and K have the same λ’s (all zero) and same rank, J and K are not similar.

If $BK = JB$ then B is not invertible:

\[
BK = B \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & b_{11} & b_{12} & 0 \\ 0 & b_{21} & b_{22} & 0 \\ 0 & b_{31} & b_{32} & 0 \\ 0 & b_{41} & b_{42} & 0 \end{bmatrix}
\]
$J B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} B = \begin{bmatrix} b_{21} & b_{22} & b_{23} & b_{24} \\ 0 & 0 & 0 & 0 \\ b_{41} & b_{42} & b_{43} & b_{44} \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Those right hand sides agree only if $b_{21} = 0, b_{41} = 0, b_{24} = 0, b_{44} = 0, b_{22} = 0, b_{42} = 0$. But then also $b_{11} = b_{22} = 0$ and $b_{31} = b_{42} = 0$. So the first column has $b_{11} = b_{21} = b_{31} = b_{41} = 0$ and B is not invertible.

5 If A^3 is the zero matrix then every eigenvalue of A is $\lambda = 0$ (because $A x = \lambda x$ leads to $\theta = A^3 x = \lambda^3 x$). The Jordan form J will also have $J^3 = 0$ because $J = B^{-1} A B$ has $J^3 = B^{-1} A^3 B = 0$. The blocks of J must become zero blocks in J^3. So those blocks of J can be

$$\begin{bmatrix} 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{but not} \quad \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \text{third power} \\ \text{is not zero} \end{pmatrix}$$

The rank of J (and A) is largest if every block is 3 by 3 of rank 2. Then rank $\leq \frac{2}{3} n$.

If $A^n = \text{zero matrix}$ then A is not invertible and rank $(A) < n$.

6 This question substitutes $u_1 = t e^{\lambda t}$ and $u_2 = e^{\lambda t}$ to show that u_1, u_2 solve the system $u' = J u$:

$$u_1' = \lambda u_1 + u_2 \quad e^{\lambda t} + t \lambda e^{\lambda t} = \lambda (t e^{\lambda t}) + (e^{\lambda t})$$

$$u_2' = \lambda u_2 \quad \lambda e^{\lambda t} = \lambda (e^{\lambda t}).$$

Certainly $u_1 = 0$ and $u_2 = 1$ at $t = 0$, so we have the solution and it involves $t e^{\lambda t}$ (the factor t appears because λ is a double eigenvalue of J).

7 The equation $u_{k+2} - 2 \lambda u_{k+1} + \lambda^2 u_k$ is certainly solved by $u_k = \lambda^k$. But this is a second order equation and there must be another solution. In analogy with $t e^{\lambda t}$ for the differential equation in 8.3.6, that second solution is $u_k = k \lambda^k$. Check:
\[(k + 2)\lambda^{k+2} - 2\lambda(k + 1)\lambda^{k+1} + \lambda^2(k)\lambda^k = [k + 2 - 2(k + 1) + k]\lambda^{k+2} = 0.\]

8 \(\lambda^3 = 1\) has 3 roots \(\lambda = 1\) and \(e^{2\pi i/3}\) and \(e^{4\pi i/3}\). Those are \(1, \lambda, \lambda^2\) if we take \(\lambda = e^{2\pi i/3}\). The Fourier matrix is

\[
F_3 = \begin{bmatrix}
1 & 1 & 1 \\
1 & \lambda & \lambda^2 \\
1 & \lambda^2 & \lambda^4
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & e^{2\pi i/3} & e^{4\pi i/3} \\
1 & e^{4\pi i/3} & e^{8\pi i/3}
\end{bmatrix}.
\]

9 A 3 by 3 circulant matrix has the form on page 425:

\[
C = \begin{bmatrix}
c_0 & c_1 & c_2 \\
c_2 & c_0 & c_1 \\
c_1 & c_2 & c_0
\end{bmatrix}
\]

with \(C = (c_0 + c_1 + c_2) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\) and \(C = (c_0 + c_1\lambda + c_2\lambda^2) \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}\) and \(C = (c_0 + c_1\lambda^2 + c_2\lambda^4) \begin{bmatrix} 1 \\ \lambda^2 \\ \lambda^4 \end{bmatrix}\).

Those 3 eigenvalues of \(C\) are exactly the 3 components of \(Fe = F \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}\).

10 The Fourier cosine coefficient \(c_3\) is in formula (7) with integrals from \(-\pi\) to \(\pi\). Because \(f\) drops to zero at \(x = L\), the integral stops at \(L\):

\[
a_3 = \frac{\int_{-L}^{L} f(x) \cos 3x \, dx}{\int_{-L}^{L} (\cos 3x)^2 \, dx} = \frac{1}{\pi} \int_{-L}^{L} (1) \cos 3x \, dx = \frac{1}{3\pi} \left[\frac{\sin 3x}{3} \right]_{x=-L}^{x=L} = \frac{2 \sin 3L}{3\pi}.
\]

Note that we should have defined \(f(x) = 0\) for \(L < |x| < \pi\) (not \(2\pi\)).