1 Relationship between Ramsey theory and extremal theory

Consider the following theorem, which falls within the framework of Ramsey theory.

Theorem 1 (Van der Waerden, 1927). For any \(k \geq 2, \ell \geq 3 \), there is \(n \) such that any \(k \)-coloring of \([n] \) contains a monochromatic arithmetic progression of length \(\ell \): \(\{a, a+b, a+2b, \ldots, a+(\ell-1)b\} \).

This is a classical theorem which predates even Ramsey’s theorem about graphs. We are not going to present the proof here. Note, however, that in order to prove such a statement, it would be enough to show that for a sufficiently large \([n] \), any subset of at least \(n/k \) elements contains an arithmetic progression of length \(\ell \). This is indeed what Szemerédi proved, much later and using much more involved techniques.

Theorem 2 (Szemerédi). For any \(\delta > 0 \) and \(\ell \geq 3 \), there is \(n_0 \) such that for any \(n \geq n_0 \) and any set \(S \subseteq [n], |S| \geq \delta n \), \(S \) contains an arithmetic progression of length \(\ell \).

It can be seen that this implies Van der Waerden’s theorem, since we can set \(\delta = 1/k \) and for any \(k \)-coloring of \([n] \), one color class contains at least \(\delta n \) elements. Szemerédi’s theorem is an extremal type of statement - stating, that any object of sufficient size must contain a certain structure.

2 Bipartite graphs

Definition 1. A graph \(G \) is called bipartite, if the vertices can be partitioned into \(V_1 \) and \(V_2 \), so that there are no edges inside \(V_1 \) and no edges inside \(V_2 \).

Equivalently, \(G \) is bipartite if its vertices can be colored with 2 colors so that the endpoints of every edge get two different colors. (The 2 colors correspond to \(V_1 \) and \(V_2 \).) Thus, bipartite graphs are called equivalently 2-colorable.

We also have the following characterization, which is useful to know.

Lemma 1. \(G \) is bipartite, if and only if it does not contain any cycle of odd length.

Proof. Suppose \(G \) has an odd cycle. Then obviously it cannot be bipartite, because no odd cycle is 2-colorable.

Conversely, suppose \(G \) has no odd cycle. Then we can color the vertices greedily by 2 colors, always choosing a different color for a neighbor of some vertex which has been colored already. Any additional edges are consistent with our coloring, otherwise they would close a cycle of odd length with the edges we considered already.

The easiest extremal question is about the maximum possible number of edges in a bipartite graph on \(n \) vertices.
Lemma 2. A bipartite graph on \(n \) vertices can have at most \(\frac{1}{4}n^2 \) edges.

Proof. Suppose the bipartition is \((V_1, V_2)\) and \(|V_1| = k \), \(|V_2| = n - k \). The number of edges between \(V_1 \) and \(V_2 \) can be at most \(k(n - k) \), which is maximized for \(k = n/2 \). \(\square\)

3 Graphs without a triangle

Let us consider Ramsey’s theorem for graphs, which guarantees the existence of a monochromatic triangle for an arbitrary coloring of the edges. An analogous extremal question is, what is the largest number of edges in a graph that does not have any triangle? We remark that this is not the right way to prove Ramsey’s theorem - even for triangles, it is not true that for any 2-coloring of a large complete graph, the larger color class must contain a triangle.

Exercise: what is a counterexample?

The question how many edges are necessary to force a graph to contain a triangle is very old and it was resolved by the following theorem.

Theorem 3 (Mantel, 1907). For any graph \(G \) with \(n \) vertices and more than \(\frac{1}{4}n^2 \) edges, \(G \) contains a triangle.

Proof. Assume that \(G \) has \(n \) vertices, \(m \) edges and no triangle. Let \(d_x \) denote the degree of \(x \in V \). Whenever \((x, y) \in E\), we know that \(x \) and \(y \) cannot share a neighbor (which would form a triangle), and therefore \(d_x + d_y \leq n \). Summing up over all edges, we get

\[
mn \geq \sum_{(x, y) \in E} (d_x + d_y) = \sum_{x \in V} d_x^2.
\]

On the other hand, applying Cauchy-Schwartz to the vectors \((d_1, d_2, \ldots, d_n)\) and \((1, 1, \ldots, 1)\), we obtain

\[
n \sum_{x \in V} d_x^2 \geq \left(\sum_{x \in V} d_x \right)^2 = (2m)^2.
\]

Combining these two inequalities, we conclude that \(m \leq \frac{1}{4}n^2 \). \(\square\)

We remark that the analysis above can be tight only if for every edge, any other vertex is connected to exactly one of the two endpoints. This defines a partition \(V_1 \cup V_2 \) such that we have all edges between \(V_1 \) and \(V_2 \), i.e. a complete bipartite graph. When \(|V_1| = |V_2| \), this is the unique extremal graph without a triangle, containing \(\frac{1}{4}n^2 \) edges.

4 Graphs without a clique \(K_{t+1} \)

More generally, it is interesting to ask how many edges \(G \) can have if \(G \) does not contain any clique \(K_{t+1} \). An example of a graph without \(K_{t+1} \) can be constructed by taking \(t \) disjoint sets of vertices, \(V = V_1 \cup \ldots \cup V_t \), and inserting all edges between vertices in different sets. Now, obviously there is no \(K_{t+1} \), since any set of \(t + 1 \) vertices has two vertices in the same set \(V_i \). The number of edges in such a graph is maximized, when the sets \(V_i \) are as evenly sized as possible, i.e. \(|V_i| - |V_j| \in \{-1, 0, +1\} \) for all \(i, j \). We call such a graph on \(n \) vertices the Turán graph \(T_{n,t} \). Turán proved in 1941 that this is indeed the graph without \(K_{t+1} \) containing the maximum number of edges. Note that the number of edges in \(T_{n,t} \) is \(\frac{1}{2}(1 - \frac{1}{t})n^2 \), assuming for simplicity that \(n \) is divisible by \(t \).
Theorem 4 (Turán, 1941). Among all K_{t+1}-free graphs on n vertices, $T_{n,t}$ has the most edges.

Proof. Let G be a graph without K_{t+1} and v_m a vertex of maximum degree d_m. Let S be the set of neighbors of v_m, $|S| = d_m$, and $T = V \setminus S$. Note that by assumption, S has no clique of size t.

We modify the graph into G' as follows: we keep the graph inside S, we include all possible edges between S and T, and we remove all edges inside T. For each vertex, the degree can only increase: for vertices in S, this is obvious, and for vertices in T, the new degrees are at least d_m, i.e. at least as large as any degree in G. Thus the total number of edges can only increase.

By induction, we can prove that $G[S]$ can be also modified into a union of $t-1$ disjoint independent sets with all edges between them. Therefore, the best possible graph has the structure of a Turán graph.

To prove that the Turán graph is the unique extremal graph, we note that if G had any edges inside T, then we strictly gain by modifying the graph into G'.

We present another proof of Turán’s theorem, which is probabilistic. Here, we only prove the quantitative part, that $\frac{1}{2}(1 - \frac{1}{t})n^2$ is the maximum number of edges in a graph without K_{t+1}.

Proof. Let’s consider a probability distribution on the vertices, p_1, \ldots, p_n such that $\sum_{i=1}^n p_i = 1$. We start with $p_i = 1/n$ for all vertices. Suppose we sample two vertices v_1, v_2 independently according to this distribution - what is the probability that $\{v_1, v_2\} \in E$? We can write this probability as

$$\Pr[\{v_1, v_2\} \in E] = \sum_{i,j: \{i,j\} \in E} p_ip_j.$$

At the beginning, this is equal to $\frac{2}{n^2} |E|$.

Now we modify the distribution in order to make $\Pr[\{v_1, v_2\} \in E]$ as large as possible. We claim that the probability distribution that maximizes this probability is uniform on some maximal clique. We proceed as follows: If there are two non-adjacent vertices i, j such that $p_i, p_j > 0$, let $s_i = \sum_{k: \{i,k\} \in E} p_k$ and $s_j = \sum_{k: \{j,k\} \in E} p_k$. If $s_i \geq s_j$, we set the probability of vertex i to $p_i + p_j$ and the probability of vertex j to 0 (and conversely if $s_i < s_j$). It can be verified that this increases $\Pr[\{v_1, v_2\} \in E]$ by $p_j(s_i - s_j)$ or $p_i(s_j - s_i)$, respectively.

Eventually, we reach a situation where there are no two non-adjacent vertices of positive probability, i.e. the distribution is on a clique Q. Then, $\Pr[\{v_1, v_2\} \in E] = \Pr[v_1 \neq v_2] = 1 - \sum_{i \in Q} p_i^2$.

By Cauchy-Schwartz, this is maximized when p_i is uniform on Q, i.e.

$$\Pr[\{v_1, v_2\} \in E] \leq 1 - \frac{1}{|Q|} \leq 1 - \frac{1}{t}$$

assuming that there is no clique larger than t. Recall that the probability we started with was $\frac{2}{n^2} |E|$ and we never decreased it in the process. Therefore,

$$|E| \leq \left(1 - \frac{1}{t}\right) \frac{n^2}{2}.$$

}\square