Problem 1. [2 points]
Prove that there is no graph with an odd number of vertices of odd degree.

Problem 2. [4 points]
Let \(a_1, a_2, \ldots, a_n \) be \(n \) not necessarily distinct integers. Prove that there is a set of consecutive numbers \(a_k, a_{k+1}, \ldots, a_\ell \) whose sum is divisible by \(n \).

Problem 3. [4 points]
Prove that every set of \(2^n + 1 \) vectors in \(\mathbb{Z}^n \) (integer coordinates) contains a pair of distinct points whose mean also has integer coordinates.

Problem 4. [4 points]
Prove that for every \(k \geq 2 \) there exists \(n_0 = n_0(k) \) such that every coloring of \(1, 2, \ldots, n_0 \) in \(k \) colors contains three distinct numbers \(1 \leq a, b, c \leq n_0 \) that have the same color and satisfy \(a \cdot b = c \).

Problem 5. [6 points]
Prove that as \(n \) tends to infinity, the probability that a random permutation of \(n \) elements does not have a 2-cycle tends to \(e^{-1/2} \).

Problem 6. [6 points]
A transitive tournament is an orientation of a complete graph for which the vertices can be numbered so that \((i, j)\) is a directed edge if and only if \(i < j \).

- Show that every orientation of the complete graph \(K_n \) contains a transitive tournament on \(\lceil \log_2 n \rceil \) vertices.

- Show that if \(k \geq 2 \log_2 n + 2 \), then there is an orientation of \(K_n \) with no transitive tournament on \(k \) vertices.

Problem 7. [6 points]
Let \(g_1(x), \ldots, g_k(x) \) be bounded real functions and \(f(x) \) be another real function. Suppose that there are positive constants \(\epsilon \) and \(\delta \) such that if \(|f(x) - f(y)| > \epsilon \), then \(\max_i(|g_i(x) - g_i(y)|) > \delta \). Prove that \(f \) is also bounded.