1. Consider the following sets on the real line \(\mathbb{R} \).

1) \(\{ \frac{m}{n} | m, n \in \mathbb{Z}, m > 0, n > 2^m \} \).
2) \(\{ \frac{m}{n} | m, n \in \mathbb{Z}, m > 0, n > 2^m \} \cup \{0\} \).
3) \(\{ \frac{m}{n} | m, n \in \mathbb{Z}, m > 0, n > 2^m \} \cup \{1\} \).
4) \(\{ n!/2^m | n \geq 1 \} \).
5) \([\sqrt{2}, \sqrt{3}] \cap \mathbb{Q} \).

6) The set of real numbers with decimal expansion \(0.x_1x_2... \) where \(x_i = 3 \) or \(5 \).
7) The intersection of set (6) with \(\mathbb{Q} \).
8) The set of rational numbers which can be written with odd denominator.
9) The set of real numbers \(r \) such that there exists a rational number \(q = m/n \) (\(n > 0 \)) such that \(|r - q| < 1/10^n \).

Write down \(^1\) (without proof) the numbers of all of the above sets which are

(a) closed in \(\mathbb{R} \):
(b) open in \(\mathbb{R} \):
(c) compact:
(d) perfect (as a subset of \(\mathbb{R} \)):
(e) dense in \(\mathbb{R} \):
(f) closed in \(\mathbb{Q} \):
(g) open in \(\mathbb{Q} \):
(h) bounded:
(i) countable:

\(^1\)Each question is worth 3 points. Each mistake or omission is \(-2\) points. If you have a negative total, you get 0.
2. Let E be a closed subset of \mathbb{R}.
 (a) (5 points) Show that the set of isolated points of E is at most countable.
 (b) (10 points) Construct a set F containing E whose set F' of limit points is E.
3. (15 points) Let \(\{d_n, n \geq 1\} \), be a sequence of positive numbers. Let \(X \) be the set of nonnegative integers \(\mathbb{Z}_{\geq 0} \) with metric defined by \(d(0, m) = d_m \) for \(m \neq 0 \) and \(d(m, n) = d_m + d_n \) if \(m, n \neq 0 \) and \(m \neq n \). For which sequences \(\{d_n\} \) is \(X \) compact?

Hint. \(d_n = 1 \) and \(d_n = 1/n \) are useful examples to consider.