This problem is about Lie group actions on flags. I define a complete flag in an n-dimensional vector space V to be a chain of subspaces

$$0 = V_0 \subset V_1 \subset \cdots \subset V_n = V, \quad \dim V_j = j.$$

The group $GL(V)$ acts transitively on the set of complete flags in V. So far this has nothing to do with the underlying field, or with topology, or with Lie groups.

Suppose now that $F = \mathbb{R}$, and that Q_0 is a positive-definite quadratic form on V. I proved that there is a bijection

$$\{\text{complete flags in } V\} \leftrightarrow \{n\text{-tuples } (L_1, \ldots, L_n) \text{ of orthogonal lines in } V\}.$$

The bijection is defined by

$$V_j = \text{Span}(L_1, \ldots, L_j), \quad L_j = V_{j-1}^\perp \cap V_j.$$

An easy consequence of this bijection is that

$$\text{complete flags in } V \simeq O(V)/[O(1)^n];$$

this identification (which requires choosing an orthonormal basis of V as a base-point) is a homeomorphism respecting the action of $O(V)$. In particular, this shows that the homogeneous space of all complete flags is compact.

Suppose W is a complex vector space. Recall that a Hermitian form on W is a map

$$h: W \times W \to \mathbb{C}$$

subject to the requirements

$$h(av_1 + bv_2, w) = ah(v_1, w) + bh(v_2, w), \quad h(v, w) = h(w, v),$$

which is nondegenerate: for every nonzero $v \in W$ there is a $w \in V$ such that $h(v, w) \neq 0$. The unitary group of (W, h) is

$$U(W) = \{g \in GL(V) \mid h(g \cdot v, g \cdot w) = h(v, w) \ (v, w \in V)\}.$$

Suppose now that V is a real vector space of dimension $2n$. Recall that a symplectic form on V is a skew-symmetric bilinear map

$$\omega: V \times V \to \mathbb{R}$$

that is nondegenerate: for every nonzero $v \in V$ there is a $w \in V$ such that $\omega(v, w) \neq 0$. The symplectic group of (V, ω) is

$$Sp(V) = \{g \in GL(V) \mid \omega(g \cdot v, g \cdot w) = \omega(v, w) \ (v, w \in V)\}.$$

If U is a subspace of V, define

$$U^\perp = \{v \in V \mid \omega(u, v) = 0 \text{ all } u \in U\}.$$
Taking \(\perp \) reverses inclusion of subspaces, and \((U^\perp)^\perp = U\). If \(U^\perp \cap U = 0 \), we say that the subspace \(U \) is symplectic. If \(I^\perp \cap I = I \) (the opposite extreme), we say that the subspace \(I \) is isotropic.

A complete symplectic flag in \(V \) is a chain of symplectic subspaces
\[
0 = U_0 \subset U_2 \subset \cdots \subset U_{2n} = V, \quad \dim U_{2j} = 2j.
\]

A complete isotropic flag in \(V \) is a chain of isotropic subspaces
\[
0 = I_0 \subset I_1 \subset \cdots \subset I_n, \quad \dim I_j = j.
\]

Given two symplectic vector spaces \((V, \omega_V)\) and \((W, \omega_W)\), we can define a symplectic structure on \(V \oplus W \) by
\[
\omega_{V \oplus W}((v_1, w_1), (v_2, w_2)) = \omega_V(v_1, v_2) + \omega_W(w_1, w_2).
\]

For the problems, you may use the (easy) fact that if \(U \) is a symplectic subspace of \(V \), then so is \(U^\perp \), and \(V \cong U \oplus U^\perp \) (as symplectic vector spaces).

A symplectic basis of \(V \) is a list of vectors in \(V \)
\[
(e_1, \ldots, e_n, f_1, \ldots, f_n)
\]
subject to the conditions
\[
\omega(e_i, e_j) = \omega(f_i, f_j) = 0, \quad \omega(e_i, f_j) = \delta_{ij}. \quad \text{(SYMP)}
\]

In all problems, \((V, \omega)\) is a symplectic vector space of dimension \(2n \).

1. a) Prove that \(Sp(V) \) acts in a simply transitive way on symplectic bases of \(V \).
 b) Suppose \((e_1, \ldots, e_m)\) is a linearly independent list in \(V \), and that \(\omega(e_i, e_j) = 0 \).
 Prove that \((e_i)\) can be completed to a symplectic basis of \(V \).
 c) Suppose \((e_1, \ldots, e_m, f_1, \ldots, f_m)\) is a list satisfying conditions like (SYMP) above. Prove that \((e_i, f_i)\) can be completed to a symplectic basis of \(V \).

2. a) Show that \(Sp(V) \) acts transitively on the set of complete symplectic flags in \(V \).
 b) Show that \(Sp(V) \) acts transitively on the set of complete isotropic flags in \(V \).
 3. Prove that there is in \(Sp(V) \) an element \(J \) such that \(J^2 = -I \).

Using \(J \) as in Problem 3, you can make \(V \) into a complex vector space by defining complex scalar multiplication
\[
(x + iy) \cdot v = x \cdot v + y \cdot Jv.
\]

4. Suppose \(J \) is as in problem 3, and \(V \) is regarded as a complex vector space as above. Show that there is a nondegenerate Hermitian form \(h \) so that
\[
\text{Cent}_{Sp(V)}(J) = U(V, h).
\]

5. Suppose \(h \) is positive definite. Prove that \(U(V, h) \) acts transitively on the set of complete isotropic flags in \(V \).

6. Suppose \(h \) is neither positive nor negative definite. Prove that \(U(V, h) \) does not act transitively on the set of complete isotropic flags in \(V \). How many open orbits (of \(U(V, h) \) on complete isotropic flags) are there?