primes - infinitely many primes. \(/ \equiv a(q) \) for \(q \) prime. \(\gcd(a, q) = 1 \).

Riemann Zeta function

\[
\xi(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

Convergent for \(\Re(s) > 1 \).

(assume \(s \in \mathbb{IR} \) for now)

Use any convergence test, e.g. integral test.

Another representation:

\[
\xi(s) = \prod_p \left(1 - p^{-s}\right)^{-1}
\]

\[
= \prod_p \left(1 + p^{-s} + p^{-2s} + \ldots\right)
\]

(show this expression is convergent: Take partial products over primes \(p \in \mathbb{N} \). Then take limit as \(N \to \infty \))

Follows from unique fact. into primes that two representations are equal.

\[
\log(\xi(s)) = \sum \sum \frac{m^{-1}}{p^m} \cdot p^{-ms}
\]

since \(-\log(1-x) = \sum_{m=1}^{\infty} \frac{x^m}{m}\).

Now for \(m > 2 \), have

\[
\sum_{p} \sum_{m>2} m^{-1} \cdot p^{-ms} < \sum_{p} \sum_{m>2} p^{-m} = \sum_{p} \frac{1}{p \cdot (p-1)} < 1.
\]

Provided \(s > 1 \).

Hence

\[
\log(\xi(s)) = \sum \frac{p^{-s} + c}{p} \quad (c < 1)
\]

\(\Rightarrow \) since \(\lim_{s \to 1^+} \), LHS \(\to 0 \), RHS \(\to 0 \).
\[\sum_{p} p^{-s} \rightarrow \infty \text{ as } s \rightarrow 1^+, \text{ i.e. } \sum \frac{1}{p} \text{ diverges.} \]

Dirichlet. mimic this proof for primes \(p \equiv a (q) \), \(q \) prime.

Somehow end up with \(\sum \frac{1}{p} \) on RHS, LHS: divergent function, prove divergent using \(\zeta(s) \).

Idea: use characters mod \(q \).

(Seen examples of characters mod \(q \). Power residue symbols, trivial character.)

Stated that they form a group under mult. Investigate further.

Pick primitive root \(g \ (mod q) \). Then any \(n \ (mod q) \) is power of \(g \): \(g^{v(n)} = n (q) \) \(v(n) \): index of \(n \).

(Depends on choice of primitive roots)

e.g. \(mod 7 \): \(\phi(6) = 2 \) prim. roots, \(3, 5 \)

\[\begin{align*}
3^2 & \equiv 2 \ (7) \quad v_3(2) = 2 \\
5^4 & \equiv 2 \ (7) \quad v_5(2) = 4.
\end{align*} \]

Then given fixed choice of prim. root \(g \). Take complex \((q-1)^{st} \) rt. of unity: \(\omega \)

Define: \(\chi(n) = \omega^{v(n)} \) (or better: \(\omega^{v(g(n))} \))

(This for \((n,q) = 1 \). Sometimes extend to all \(n \in \mathbb{Z} \)

with \(\chi(n) = 0 \) if \(q \mid n \).)
Note: \(\omega \) need not be primitive \((q-1)\)st rt. of unity.

Any choice of \(\omega \) gives a character.

\(\omega = (-1) \) gives Legendre symbol. \(\omega = 1 \) gives trivial character.

so have \(q-1 \) different characters mod \(q \).

(note they are characters since if \(n \equiv n_1 n_2 \pmod{q} \) then
\[
\chi(n) \equiv \chi(n_1) + \chi(n_2) \pmod{q-1}
\]

i.e. \(\omega \chi(n) = \omega \chi(n_1) + \omega \chi(n_2) = \omega \chi(n_1) \cdot \omega \chi(n_2) \)

so \(\chi(n) = \chi(n_1) \cdot \chi(n_2) \) as desired.

Do we get (yet more) characters by choosing different primitive roots?

no. e.g. \(\omega = 8_6 \) \(\chi(n) = (8_6)^{3 \chi(n)} \)

Can find on \(8_i \) s.t. \(\chi(n) = (8_i)^{5 \chi(n)} ? \) HW.

\[
\text{Key property: } \sum_{\chi} \chi(n) = 0 \text{ if } n \not\equiv 0 \pmod{q}.
\]

Idea \(\sum \chi(n) = \sum_{\omega} \omega \chi(n) \). But know \(\sum \omega^k \), for any \(k \),

\[
\omega \text{ so } \begin{cases}
0 & \text{if } k \not\equiv 0 \pmod{q-1} \\
q-1 & \text{if } k \equiv 0 \pmod{q-1}
\end{cases}
\]

Sneaky idea: Consider
\[
\sum_{\chi} \overline{\chi}(a) \cdot \chi(n) = \sum_{\omega} -\omega^a \cdot \omega \chi(n) = \begin{cases}
0 & \text{if } n \equiv a \pmod{q} \\
q-1 & \text{if } n \not\equiv a \pmod{q}
\end{cases}
\]
Sketch of Dirichlet’s pf.

\[L_\omega(s) = \sum_{n=1}^{\infty} \frac{\omega(n)}{n^s} = \sum_{n=1}^{\infty} \frac{X(n)}{n^s} \]

\[|X(n)| = 1 \text{, so conv. for } \Re(s) > 1. \text{ Moreover, } \omega(n) \text{ is a multiplicative function, so we may write:} \]

\[L_\omega(s) = \prod_{\text{prime } p} \left(1 - \omega(p)p^{-s} \right)^{-1}, \text{ for } s > 1. \]

(\text{check that } |\omega(p)p^{-s}| = p^{-s} < \frac{1}{2} \text{ when } s > 1 \text{ so no terms in prod. are 0, hence } L_\omega(s) \neq 0 \text{ for } s > 1). \]

Take logs again:

\[\log L_\omega(s) = \sum_{p \neq q} \sum_{m=1}^{\infty} \frac{\omega(p^m)}{p^ms} \]

Consider:

\[\frac{1}{q-1} \cdot \sum_{w} \omega_{w(a)} \cdot \log L_\omega(s) \]

\[= \sum_{p} \sum_{m=1}^{\infty} \frac{p^{-ms}}{p^m \equiv a (q)} \]

estimate away terms with \(m > 2 \). Leaves sum we want.
Just need to show:

\[\sum_{q=1}^{+\infty} \omega^{-v(q)} \log L_{\omega}(s) \to \infty \text{ as } s \to 1^+. \]

This will prove \(\sum_{p=a(q)}^{\infty} \frac{1}{p} \) divergent.

On LHS: taking \(\omega = 1 \) gives \(\log L_{1}(s) \) where

\[L_{1}(s) = \prod_{n=1}^{\infty} \frac{1}{1 - p^{-s}} = \prod_{\text{primes } \ell} (1 - \ell^{-s}) \cdot \zeta(s). \]

So if \(\zeta(s) \to \infty \text{ as } s \to 1^+ \), \(L_{1}(s) \to \infty \text{ as } s \to 1^+ \).

\(1 - \ell^{-s} \to 1 - \frac{1}{\ell} \)

Remains to show: \(\lim_{s \to 1^+} \log L_{\omega}(s) \) doesn't screw this up. (i.e. is bounded as \(s \to 1^+ \))

Use a little analysis to reformulate this question:

Claim: \(L_{\omega}(s) \), \(\omega \neq 1 \), is convergent for \(s > 0 \) (not just \(s > 1 \)).

Use Dirichlet's test for convergence: \(\sum_{n=1}^{m} a_{n} b_{n} \) bounded, not ind. terms.

Given \(\sum_{n=1}^{\infty} a_{n} b_{n} \) bounded. \(\sum_{n=1}^{\infty} a_{n} \) decreasing, limit 0.

then \(\sum_{n=1}^{\infty} a_{n} b_{n} \) converges.

Let \(b_{n} = n^{-s} \), \(a_{n} = \omega^{v(n)} \). Note that sums \(\sum_{n=1}^{\infty} d_{n} \)

are bounded since the sum over any \(q \) consecutive integers = 0.

(complete residue class)

In fact, uniformly convergent \(\omega \) r.t. \(s \)

for any \(s > \delta > 0 \) (bounded away from 0). So

enough to show \(L_{\omega}(1) \neq 0 \).
Cases: \(\omega \) not real \((\omega \neq 1, -1) \), \(\omega \) real \((\omega = -1) \).

Suppose \(\omega \) complex.

Set \(a = 1 \) \& in our earlier equation:

\[
\sum_{q=1}^{\infty} \sum_{m=1}^{q} \frac{1}{m} \log(L_\omega(s)) = \sum_{p=1}^{\infty} \sum_{m=1}^{p} \frac{1}{m} \log(p^{-m}s^{-1})
\]

RHS has all positive terms. \(\Rightarrow \sum_{\omega} \log(L_\omega(s)) > 0 \).

I.e. \(\prod_{\omega} L_\omega(s) \geq 1 \), for any \(s > 1 \).

If \(\exists \omega \) (not real) with \(L_\omega(1) = 0 \), then \(L_{\overline{\omega}}(1) = 0 \), with \(\overline{\omega} \): complex conj. (since, for \(s \) real, \(L_{\overline{\omega}}(1) = \overline{L_\omega(1)} \)).

Conclusion: 2 factors in \(\prod_{\omega} \) have limit 0 as \(s \rightarrow 1^+ \).

1 factor, \(L_1(s) \), has limit 0 as \(s \rightarrow 1^+ \).

Other factors bounded, so could contribute 0.

Idea: 2+ factors of \(\prod_{\omega} \) with limit 0 will win out over \(L_1(s) \) with \(\frac{\text{left side}}{\text{right side}} \) limit 0.

Giving contradiction to fact that \(\prod_{\omega} L_\omega(s) \geq 1 \) for any \(s > 1 \). (taking limit of both sides)

Need to analyze behavior at \(s = 1 \) further:

Want \(L_1(s) < \frac{c}{s-1} \), some constant.

Know \(L_1(s) = \frac{1}{1-q^{-s}} \sum_{n=1}^{\infty} \frac{1}{n^s} < \frac{1}{1-q^{-2}} \sum_{n=1}^{\infty} \frac{1}{n^s} \), and

for \(s \in (1, 2) \)

\[
\sum_{n=1}^{\infty} \frac{1}{n^s} < 1 + \int_{1}^{\infty} \frac{1}{x^s} \, dx = \frac{s}{s-1}.
\]
so take \(c = 2 \cdot (1 - \frac{1}{q^2}) \)
bounded \(L_1(s) \) in range
\(1 \leq s < 2 \).

For \(L_\omega(s) \), show \(|L_\omega(s)| < \frac{c_2}{s-1} \) \((\text{same for } \overline{\omega})\)

mean value thm: \(\exists \ s_1 \in (1, s) \) with
\[
L_\omega(s) - L_\omega(1) = \frac{L'_\omega(s_1)}{s-1}.
\]
so if \(L_\omega(1) = 0 \), we have \(L_\omega(s) = (s-1) L'_\omega(s_1) \)
Suffices to show \(|L'_\omega(s_1)| \) bounded to get our claim.

But by similar methods as before,
\[
L'_\omega(s) = - \sum_{n=1}^{\infty} \omega(n) \cdot (\log n) n^{-s} \quad \text{again unif. conv. for } s \geq \delta > 0
\]
by Dirichlet's test since
\[
\log n / n^{s} \text{ decreasing for } n \text{ suff. large with } \lim s = 0.
\]

\(\Rightarrow L'_\omega(s) \text{ continuous, for } s > 0 \).
\(\Rightarrow |L'_\omega(s)| \text{ bounded} \).

Putting these into our product \(\prod_{\omega} L_\omega(s) > 1 \), taking limits,
gives contradiction. \((\text{LHS} = 0 \text{ in abs. value}).\)
if ω real, i.e. $\omega = -1$, then
\[L(s_1-1) = \sum_{n=1}^{\infty} \frac{(n)}{\eta^n} \]

where $(\frac{n}{\eta})$ is the Legendre symbol. (Call this $L(s)$ for simplicity)

We must show $L(1) \neq 0$. (Know $L(1) > 0$ since $L(s)$ continuous @ $s=1$
and Euler product shows $L(s) > 0$ for $s > 1$.)

Plan: use Gauss sums to express $(\frac{n}{\eta})$, then have $L(s)$ as double sum.
interchange orders of summation.

Recall that $g(n, q) \overset{def}{=} \sum_{m=1}^{q-1} (\frac{m}{q}) e^{2\pi imn/q}$

and

$g(n, q) = (\frac{n}{q}) \cdot g(0, q)$.

i.e.

$(\frac{n}{q}) = \frac{1}{g(1, q)} \sum_{m=1}^{q-1} (\frac{m}{q}) e^{2\pi imn/q}$. Substitute into $(*)$

[Seems like no advantage here, but recall Gauss determined exact value of
this sum. (We showed $|g(1, q)| = \sqrt{q}$, at least $\neq 0$ so expression
well-defined.)]

Interchanging orders of summation:

\[L(1) = \frac{1}{g(1, q)} \sum_{m=1}^{q-1} (\frac{m}{q}) \sum_{n=1}^{\infty} \frac{1}{n} e^{2\pi imn/q} \]

Remember

$-\log (1-x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n$. Makes sense as complex series
as well. (radius of conv. < 1
as real series
conv. @ -1, div. @ 1)

As complex series, conv. for any z, $|z| \leq 1$
with $z \neq 1$.

so

$L(1) = \frac{-1}{g(1, q)} \sum_{m=1}^{q-1} (\frac{m}{q}) \left\{ \log \left| 1 - e^{2\pi im/\eta} \right| + i \left(\frac{\pi m}{\eta} - \frac{\pi}{2} \right) \right\}$
Answer to exact formula for \(g(1,q) = \{ \begin{align*} \frac{q}{b^{1/2}} & \quad \text{if } q = 1, \\ i \frac{q^{1/2}}{b} & \quad \text{if } q = 3. \end{align*} \) (4)

if \(q = 3 \) (4), easier since know \(L(1) \) is real. (all terms real)

so have \(\begin{align*}
L(1) &= -\frac{1}{i q^{1/2}} \sum_{m=1}^{q-1} \left(\frac{m}{q} \right) \cdot \left(i \left(\frac{\pi m}{q} - \frac{\pi}{2} \right) \right) \\
&= -\frac{\pi}{q^{3/2}} \sum_{m=1}^{q-1} \left(\frac{m}{q} \right) \cdot m + c \cdot \sum_{m=1}^{q-1} \left(\frac{m}{q} \right) \\
&= \frac{3\pi}{23^{1/2}} \\
\end{align*} \)

(\text{even w/o knowing } L(1) \text{ real, can see that } m, q-m \text{ terms in sum cancel the } \log(\sin) \text{ factors})

E.g.: \(q = 23 \)

then \(\sum_{m=1}^{23-1} m \cdot \left(\frac{m}{23} \right) = 1 + 2 + 3 + 4 - 5 + 6 - 7 + 8 \cdots - 21 - 22 = -69 \)

so \(L(1) = \frac{3\pi}{(23)^{1/2}} \)

Cool pf. note: \(^{\wedge} \) has same parity as \(\sum_{m=1}^{q-1} m = q \cdot \frac{(q-1)}{2} \)

\(\sum_{m=1}^{q-1} m \cdot \left(\frac{m}{q} \right) \)

But \(q \cdot \frac{(q-1)}{2} \) is odd since \(q \) odd, so finite sum can't = 0. //

No elementary pf that \(\sum_{m=1}^{q-1} m \cdot \left(\frac{m}{q} \right) \) is always \(< 0 \). (Know true since \(L(s) > 0 \) for \(s > 1 \) and hence \(L(1) > 0 \))