Instructions: Print your name, student ID number and instructor’s name in the space provided. During the test you may not use notes, books or calculators. Read each question carefully and show all your work; full credit cannot be obtained without sufficient justification for your answer unless explicitly stated otherwise. Underline your final answer to each question. There are 4 questions. You have 50 minutes to do all the problems.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4(BONUS)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
1. Give an explicit definition of the characters \(\chi_q : (\mathbb{Z}/q\mathbb{Z})^\times \rightarrow \mathbb{C}^\times \), where \(q \) is prime. That is, provide a careful definition of such a function \(\chi_q \) and then prove that your definition satisfies the necessary property of a character.

Solution:

Everything on this quiz can be found someplace in the notes posted online, so I will be relatively brief on these solutions.

The character \(\chi_q \) to the modulus \(q \) is defined by

\[
\chi_q(n) = \zeta_{q-1}^{\nu(n)}
\]

where \(\zeta_{q-1} \) is a \((q-1)\)st root of unity, and \(\nu(n) \) is defined by the equation

\[
g^{\nu(n)} \equiv n \pmod{q}, \quad g: \text{a primitive root mod } q.
\]

Since \(g \) is a primitive root, it’s powers \(g^k \) give a complete reduced residue system mod \(q \), and hence we may find such an exponent \(\nu(n) \) satisfying the above congruence for any \(n \) with \(q \nmid n \). Moreover, any other exponent \(\nu'(n) \) satisfying this property differs from \(\nu(n) \) by a multiple of \(q-1 \) (the order of \(g \)). This shows that \(\chi_q \) does not depend on the choice \(\nu(n) \) or \(\nu'(n) \), since \(\zeta_{q-1}^{\nu(n)} = \zeta_{q-1}^{\nu'(n)} \). (That’s actually quite important, as our definition would not make sense without this fact.)

To check that \(\chi_q \) is a character, we must verify the multiplicative property \(\chi_q(mn) = \chi_q(m)\chi_q(n) \). This follows easily from the above definitions together with the fact that

\[
\nu(mn) \equiv \nu(m) + \nu(n) \pmod{q-1}
\]
2. Provide a definition for the Dirichlet series \(L(s, \chi) \), for \(\chi \) a character mod \(q \), and then prove the following equality (for any non-zero residue \(a \) mod \(q \)):

\[
\frac{1}{q-1} \sum_{\chi \mod q} \bar{\chi}(a) \log(L(s, \chi)) = \sum_{p \text{ prime}} \sum_{m=1}^{\infty} \frac{1}{m} p^{-ms}
\]

Solution:

This identity really comes straight from the notes, and is the key identity to setting up Dirichlet’s theorem on primes. There are three main ingredient to proving it.

- \(L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p \neq q} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1} \)

which is just like the Euler product for the Riemann zeta function. It still holds in this case because \(\chi \) is a multiplicative function.

- Apply log to the above identity, and use the fact that, as a power series,

\[-\log(1 - x) = \sum_{m=1}^{\infty} \frac{x^m}{m}\]

- Finally, use the following all-important fact about characters:

\[
\sum_{\chi} \chi(n) = \begin{cases} q - 1 & n \equiv 1 \mod q \\ 0 & \text{otherwise} \end{cases}
\]

which is an easy consequence of our definition in the previous problem in terms of roots of unity, remembering that there are \(q - 1 \) characters mod \(q \) which result from the distinct choices of roots of unity. From this, it follows that

\[
\sum_{\chi} \bar{\chi}(a) \chi(n) = \begin{cases} q - 1 & n \equiv a \mod q \\ 0 & \text{otherwise} \end{cases}
\]

which gives the above equality.
3. Prove that the following statement is equivalent to Dirichlet’s theorem on primes in an arithmetic progression (FOR THE GENERAL MODULUS):

STATEMENT: Given any two positive integers \(h, k \) with \(\gcd(h, k) = 1 \), there exists at least one prime in the set \(\{kn + h\} \), where \(n \) ranges over all positive integers.

Solution:

One direction of the equivalence is immediate. If there are infinitely many primes in any arithmetic progression (Dirichlet’s theorem) then taking the modulus to be \(k \) and the residue class to be \(h \), certainly there exists one such prime \(p \equiv h \pmod{k} \), for \(\gcd(h, k) = 1 \).

For the reverse direction, assume the statement, and suppose Dirichlet’s theorem was false – i.e., there exist some \(h, k \) such that there are only finitely many primes \(p \equiv h \pmod{k} \). Then there is a largest one \(p_{\text{max}} \). Then consider the arithmetic progression of integers \(\equiv h \pmod{kp_{\text{max}}} \). Since \(h \) and \(kp_{\text{max}} \) are relatively prime, then by the statement, there exists a prime \(P \equiv h \pmod{kp_{\text{max}}} \) which implies \(P \equiv h \pmod{k} \) and \(P > p_{\text{max}} \), a contradiction.
4. (BONUS)

(a) Prove that $L(1, \chi_q) \neq 0$ if χ_q is a complex character (i.e. $\chi_q(n)$ not real for some n).

Solution:

This is straight from the notes. It relies on a proof by contradiction.

(b) Let χ_q be the non-trivial real character mod q. Choose a prime q and give an explicit evaluation of $L(1, \chi_q)$, thus exhibiting in this special case that the value is non-zero.

Solution:

Use the explicit formula for $L(1, \chi_q)$ given for primes $q \equiv 3 \pmod{4}$ to compute an example. (It’s just a finite sum so for choice of small q, it is easy to compute explicitly. The example $q = 23$ is done in the notes.)