Problem 3.2.6 First note that 1009 is a prime number. We need to decide the value of \(\left(\frac{150}{1009} \right) \).

We can find that

\[
\left(\frac{150}{1009} \right) = \left(\frac{2}{1009} \right) \left(\frac{3}{1009} \right) \left(\frac{25}{1009} \right).
\]

Because 1009 \(\equiv 1 \) (mod 8), we have \(\left(\frac{2}{1009} \right) = 1 \).

By the theorem 3.5, with the fact that 1009 = 3 \(\cdot \) 336 + 1, \(\left(\frac{3}{1009} \right) = \left(\frac{1}{3} \right) = 1 \).

Since 25 is a square number, \(\left(\frac{25}{1009} \right) = 1 \).

In conclusion, we have \(\left(\frac{150}{1009} \right) = 1 \). Therefore, the given equation is solvable. (Actually, 139\(^2 \equiv 150 \) (mod 1009).) □

Problem 3.2.7 First, it is easily observed that \(x^2 \equiv 13 \) (mod \(p \)) has a solution when \(p \) is 2 or 13.

Now assume that \(p \) is neither 2 nor 13. Then \(p \) is an odd prime, and we have

\[
x^2 \equiv 13 \pmod{p} \text{ has a solution. } \iff \left(\frac{13}{p} \right) = 1. \iff \left(\frac{p}{13} \right) (-1)^{\frac{p-1}{2}} \left(\frac{p}{13} \right) = 1.
\]

By a little computation, we can easily verify that the quadric residues of 13 are \{1, 3, 4, 9, 10, 12\}. Therefore, \(\left(\frac{p}{13} \right) = 1 \) if and only if \(p \equiv 1, 3, 4, 9, 10, 12 \) (mod 13).

Thus we can find that \(x^2 \equiv 13 \) (mod \(p \)) has a solution when \(p \) is 2 or 13 or \(p \equiv 1, 3, 4, 9, 10, 12 \) (mod 13). □

Problem 3.2.11 Suppose that \(x^2 \equiv a \) (mod \(pq \)) is solvable. This implies that there exist a \(x \) satisfying \(x^2 \equiv a \) (mod \(p \)), so it is absurd because \(a \) is a quadratic nonresidue of \(p \). Therefore, \(x^2 \equiv a \) (mod \(pq \)) is not solvable.

Problem 3.2.14 Suppose \(p, q \) are twin primes satisfying \(q = p + 2 \). Then clearly they are both odd, and one of the \(p, q \) is of the form \(4k + 1 \). Therefore, \((-1)^{\frac{p-1}{2}} \frac{p}{2} = 1 \). Hence we can find that
There is an integer a such that $p \mid (a^2 - q)$.

\[
\left(\frac{a}{p} \right) = 1.
\]

\[
\left(\frac{q}{p} \right) = \left(\frac{2}{p} \right) (-1)^{\frac{p-1}{2} \frac{q-1}{2}} = 1.
\]

There is an integer b such that $q \mid (a^2 - p)$.

as desired. □

Problem 3.2.19 First suppose that p is a divisor of numbers of both of the forms $m^2 + 1, n^2 + 2$. By the exercise 3.1.20, we have $p \equiv 1 \pmod{4}$ and $p \equiv 1$ or $3 \pmod{8}$. Therefore, $p \equiv 1 \pmod{8}$. By theorem 2.37, with $a = -1, n = 4$, we can conclude that $x^4 \equiv -1 \pmod{p}$ has a solution. That is equivalent to say that p is a divisor of some number of the form $k^4 + 1$.

Conversely, assume that p is a divisor of some number of the form $k^4 + 1$. Again by the exercise 3.1.20, we have $p \equiv 1 \pmod{8}$. This implies that (by again same exercise) p is a divisor of numbers of both of the forms $m^2 + 1, n^2 + 2$, as desired. □

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)