18.781, Fall 2007 Problem Set 4

Solutions to Selected Problems

Problem 2.7.2 You may want to solve this problem by taking x as 0 through 6 and find the value of x which makes the given equation true. It might be easier, but here we will use the Theorem 2.29.

Since $(4, 7) = 1$, by multiplying 4, the given equation has same solution with

$$x^3 + 6x^2 + 3x + 4 \equiv 0 \pmod{7}.$$

Since degree of this equation is 3, if we show that $x^3 + 6x^2 + 3x + 4$ is a factor of $x^7 - x$ modulo 7, we can conclude that $x^3 + 6x^2 + 3x + 4 \equiv 0 \pmod{7}$ has three solutions by Theorem 2.29.

Keeping the fact that every coefficient is in modulo 7 in your mind, divide $x^7 - x$ by $x^3 + 6x^2 + 3x + 4$. Then we can calculate like following:

$$(x^7 - x) - (x^3 + 6x^2 + 3x + 4)(x^4) \equiv (x^6 + 4x^5 + 3x^4 - x)$$

$$(x^6 + 4x^5 + 3x^4 - x) - (x^3 + 6x^2 + 3x + 4)(x^3) \equiv (5x^5 + 3x^3 - x)$$

$$(5x^5 + 3x^3 - x) - (x^3 + 6x^2 + 3x + 4)(5x^2) \equiv 5x^4 + 2x^3 + x^2 - x$$

$$(5x^4 + 2x^3 + x^2 - x) - (x^3 + 6x^2 + 3x + 4)(5x) \equiv 0$$

This implies that $x^3 + 6x^2 + 3x + 4$ is a factor of $x^7 - x$ modulo 7, so we’ve done. □

Problem 2.7.3 We can find that

$$x^{14} + 12x^2 \equiv x^{14} - x^2 \equiv x(x^{13} - x) \pmod{13}.$$

Since $(x^{13} - x) \equiv 0 \pmod{13}$ for all integer x by Fermat’s theorem, $x^{14} + 12x^2 \equiv 0 \pmod{13}$ has 13 solutions. □

Problem 2.7.4 First of all, if the degree of f is strictly less than 1, $f(x) \equiv 0 \pmod{p}$ has a solution if and only if $f(x)$ is identically zero. Then if we let $q(x) = 0$, we get a desired conclusion. Now assume that degree of $f > 0$.

We will use an induction on j. Before proceeding, we prove the following claim:

Suppose that $f(x) \equiv 0 \pmod{p}$ has a solution $x \equiv a \pmod{p}$. Then there is a polynomial $q(x)$ such that $f(x) \equiv (x - a)q(x) \pmod{p}$.

Dividing \(f(x) \) by \((x - a) \), we have \(f(x) \equiv (x - a)q(x) + r(x) \pmod p \) where \(\deg(r) < 1 \), that is, \(r(x) \) is constant in modulo \(p \). Since \(f(a) \equiv 0 \pmod p \), \(r(a) \equiv 0 \pmod p \). Hence \(r(x) \equiv 0 \) in modulo \(p \), so we can find that
\[
0 \equiv f(x) \equiv (x - a)q(x) \pmod p
\]
Now we prove the statement of problem by induction. The case of \(j = 1 \) is just proved by the claim. Suppose that the statement is true for \(j = k \), and consider the case of \(j = k+1 \). Because that \(f(x) \equiv 0 \pmod p \) has \(k \) solutions, we can say that \(f(x) \equiv (x-a_1)(x-a_2)\cdots(x-a_k)q(x) \pmod p \). Applying \(x = a_{k+1} \), we have
\[
0 \equiv f(a_{k+1}) \equiv (a_{k+1} - a_1)(a_{k+1} - a_2)\cdots(a_{k+1} - a_k)q(a_{k+1}) \pmod p
\]
Since \(a_{k+1} \) is different from \(a_1, \ldots, a_k \) in modulo \(p \), \((a_{k+1} - a_i) \) is not \(0 \) for \(i = 1, \ldots, k \). Therefore, \(q(a_{k+1}) \equiv 0 \pmod p \). By the above claim, we have \(q(x) \equiv (x-a_{k+1})s(x) \pmod p \). With the fact that \(f(x) \equiv (x-a_1)(x-a_2)\cdots(x-a_k)q(x) \pmod p \), we can conclude that
\[
0 \equiv f(x) \equiv (x-a_1)(x-a_2)\cdots(x-a_k)(x-a_{k+1})s(x) \pmod p
\]
This completes the proof. \(\square \)

Problem 2.8.2 We should find \(a \) such that \(a^{22} \equiv 1 \pmod {23} \) and \(a^i \not\equiv 1 \pmod {23} \) for any other \(i \mid 22 \). Note that the positive divisors of 22 are 1, 2, 11, 22.

For the case \(a = 2 \), we can find that
\[
2^{11} \equiv 2048 \equiv 23 \cdot 89 + 1 \equiv 1 \pmod {23}
\]
Therefore the order of 2 modulo 23 is \(\leq 11 \), (Actually, is equal to 11), so 2 is not a primitive root of 23.

For the case \(a = 3 \), we can find that
\[
3^{11} \equiv (3^3)^3 \cdot 3^2 \equiv 27^3 \cdot 9 \equiv 3^3 \cdot 9 \equiv (-5) \cdot 9 \equiv -45 \equiv 1 \pmod {23}
\]
Therefore, the order of 3 modulo 23 is \(\leq 11 \), (Actually, is equal to 11), so 3 is not a primitive root of 23.

For the case \(a = 5 \), we can find that
\[
5^1 \not\equiv 1 \pmod {23},
\]
\[
5^2 \equiv 2 \not\equiv 1 \pmod {23}
\]
\[
5^{11} \equiv 25^5 \cdot 5 \equiv 2^5 \cdot 5 = 160 \equiv -1 \not\equiv 1 \pmod {23}.
\]
\(5^{22} \equiv 1 \pmod {23} \) is clearly true by Euler’s theorem, hence 5 is a primitive root of 23.

(Of course, the cases of \(a = 2 \) and \(a = 3 \) are needless when you have *good intuition* or *good luck* or page 514.)

\(\square \)
Problem 2.8.6 Suppose that \(a^i = a^j \pmod{m} \) for some different \(i, j \in \{1, \cdots h\} \). Without loss of generality, we may assume that \(i > j \). Then \(a^{i-j} = 1 \pmod{m} \) where \(1 \leq i - j < h \). But by definition, \(h \) is the smallest positive integer such that \(a^h = 1 \pmod{m} \), hence this is a contradiction. Therefore, no two of them are congruent modulo \(m \).

Problem 2.8.9 Let \(h \) be the order of \(3 \) modulo 17. By Euler’s theorem, we already have \(3^{16} \equiv 1 \pmod{17} \). Therefore, \(h \mid 16 \). Because of \(16 = 2^4 \), if \(h \nmid 2^3 \), then \(h = 16 \). But \(3^8 \equiv -1 \pmod{17} \) implies that \(h \nmid 2^3 \). Thus we can have \(h = 16 \), which implies that 3 is the primitive root of 17.

Problem 2.8.14 Let \(\bar{a} \) has order of \(h \) modulo \(p \). From
\[
1 \equiv 1^h \equiv (\bar{a}a)^h \equiv a^h \cdot \bar{a}^h \equiv \bar{a}^h \pmod{p},
\]
we can find that \(\bar{h} \mid h \). Also, from
\[
1 \equiv 1^h \equiv (\bar{a}a)^h \equiv a^h \cdot \bar{a}^h \equiv a^h \pmod{p},
\]
we can find that \(h \mid \bar{h} \). Therefore, \(h = \bar{h} \).

From \(a \equiv g^i \pmod{p} \), multiplying \(\bar{a} \) by both sides, we have
\[
\bar{a} \cdot g^i \equiv \bar{a}a \equiv 1 \equiv g^{p-1} \pmod{p}.
\]
Since \(i < p - 1 \), we can conclude that \(\bar{a} \equiv g^{p-1-i} \pmod{p} \), as desired.

Problem 2.8.18 The fact that \(g \) is a primitive root of \(p \) implies that \(g^i \not\equiv 1 \pmod{p} \) for any integer \(0 < i < p-1 \). In particular, \(g^{p-1} \not\equiv 1 \pmod{p} \). The proof of Corollary 2.38 implies that this gives \(g^{p-1} \equiv -1 \pmod{p} \). Similarly, \(g'^{p-1} \equiv -1 \pmod{p} \). Thus we can find that
\[
(gg')^{p-1} \equiv g^{p-1}g'^{p-1} \equiv (-1) \cdot (-1) \equiv 1 \pmod{p}.
\]
Hence \(gg' \) has order equal to or less than \(\frac{p-1}{2} \), so \(gg' \) is not a primitive root of \(p \).

We need to solve more exercises to prove the statement of Exercise 2.8.27.

Problem 2.8.25 Express \(m \) as \(m = \prod p^a \). Then
\[
a^{m-1} \equiv 1 \pmod{m} \iff a^{m-1} \equiv 1 \pmod{p^a} \text{ for each } p \text{ such that } p \mid m.
\]
By Corollary 2.42, \(x^{m-1} \equiv 1 \pmod{p^a} \) has \((m - 1, \phi(p^a)) \) solutions modulo \(p^a \). Here, \(\phi(p^a) = p^{a-1}(p-1) \). Also, \(p \mid m \) implies that \((p, m-1) = 1 \). Therefore, \((m - 1, \phi(p^a)) = (m - 1, p-1) \). In short, \(x^{m-1} \equiv 1 \pmod{p^a} \) has \((m - 1, p-1) \) solutions for each \(p \mid m \). By Chinese remainder theorem, we can conclude that \(x^{m-1} \equiv 1 \pmod{m} \) has exactly \(\prod p^a (p - 1, m - 1) \) solutions, which is the claim in Exercise 25.
Problem 2.8.26 First we show that if \(m \) is a Carmichael number, \(m \) is composite, square-free and \((p - 1) \mid (m - 1) \) for all primes \(p \) dividing \(m \).

\(m \) is composite by definition of Carmichael number in page 59. By Exercise 25, the number of reduced residues \(a \mod m \) such that \(a^{m-1} \equiv 1 \mod m \) is exactly \(\prod_{p|m} (p-1, m-1) \).

Since \(m \) is a Carmichael number, all the reduced residues \(a \mod m \) satisfy \(a^{m-1} \equiv 1 \mod m \). Therefore, we can have

\[
\phi(m) = \prod_{p|m} (p-1, m-1).
\]

But when \(m = \prod p^a \),

\[
\phi(m) = \prod_{p|m} p^{a-1}(p-1) \geq \prod_{p|m} (p-1) \geq \prod_{p|m} (p-1, m-1),
\]

thus all the equality should hold. This implies that each \(\alpha \) should be 1 and \((p-1, m-1) = (p-1) \) which means that \((p-1) \mid (m-1) \).

Now we assume that \(m \) is composite, square-free and \((p-1) \mid (m-1) \) for all primes \(p \) dividing \(m \). Then these condition give us \(\phi(m) = \prod_{p|m} (p-1, m-1) \) as we just observed. By exercise 25, that is the number reduced residues \(a \mod m \) satisfy \(a^{m-1} \equiv 1 \mod m \). Since that is equal to \(\phi(m) \), all the reduced residues \(a \mod m \) satisfy \(a^{m-1} \equiv 1 \mod m \). Because \(m \) is composite, we can conclude that \(m \) is a Carmichael number. \(\square \)

Problem 2.8.27 First assume that \(m \) is composite and \(a^m \equiv a \mod m \) for all integers \(a \). Then for any \(a \) such that \((a, m) = 1 \), we can divide the both side of congruence by \(a \), so we have \(a^{m-1} \equiv 1 \mod m \). By definition, \(m \) is a Carmichael number.

Now assume that \(m \) is a Carmichael number. Then \(m \) is a composite number by definition. Also by Exercise 26, \(m \) is square-free and \((p-1) \mid (m-1) \) for any \(p \mid m \).

Fix any prime \(p \) such that \(p \mid m \). For an integer \(a \) such that \((a, p) = 1 \), \(a^{p-1} \equiv 1 \mod p \).

Since \((p-1) \mid (m-1) \), this gives \(a^{m-1} \equiv 1 \mod p \), hence, \(a^m \equiv a \mod p \).

For an integer \(a \) such that \(p \mid a \), clearly \(a^m \equiv 0 \equiv a \mod p \).

In conclusion, for any integer \(a \) and for any prime \(p \) such that \(p \mid m \), \(a^m \equiv a \mod p \).

This implies that for any integer \(a \), \(a^m \equiv a \mod \prod_{p|m} p \), where \(\prod_{p|m} P = m \) since \(m \) is square-free. Thus we complete the proof. \(\square \)

Problem 2.8.31 First we prove the following claim.

For the rational number \(r \), its decimal expansion

\[
r = \sum_{i=-\infty}^{m} (r_i10^i) = r_m r_{m-1} \cdots r_0 r_{-1} r_{-2} \cdots
\]

where \(r_m \neq 0 \) \((m \) may be negative\) is periodic with period \(k \) if and only if \((10^{k-m}r - 10^{-m}r) \) is an integer.

Suppose there exist a rational number \(r \) whose decimal expansion \(r = \sum_{i=-\infty}^{m} (r_i10^i) = r_m r_{m-1} \cdots r_0 r_{-1} r_{-2} \cdots \) where \(r_m \neq 0 \) \((m \) may be negative\).

If this expression is periodic with period \(k \), then \(10^{k-m}r \) and \(10^{-m}r \) have same fractional part. That is, \(10^{k-m}r - 10^{-m}r \) is an integer.
Conversely, Suppose that there is k such that $10^{k-m}r - 10^{-m}r$ is an integer. Then $10^{k-m}r$ and $10^{-m}r$ have same fractional part. Therefore, we have

$$r_m r_{m-1} \cdots r_{m-k+1} \equiv r_m k \cdots r_{m-2k+1} \equiv r_{m-2} k \cdots r_{m-3k+1} \equiv r_{m-3} k \cdots$$

Since the fractional parts are equal, by comparing first k terms of fractional part, the expression $r_m \cdots r_{m-k+1}$ is same with $r_{m-k} \cdots r_{m-2k+1}$. Comparing next k terms, the expression $r_{m-k} \cdots r_{m-2k+1}$ is identical with $r_{m-2k} \cdots r_{m-3k+1}$.

By comparing repeatedly, we can have that the decimal expansion of r is periodic. (To make this argument precise, you may use an induction.)

Now we prove the original problem. Suppose that the decimal expansion of $\frac{1}{p}$ has period $p-1$. It means that the decimal expansion of $\frac{1}{p}$ is periodic with least period $p-1$. Let $r = \frac{1}{p}$ and m be the number which appears in the above argument. Since $\frac{1}{p} < 1$, m is negative. By the above claim, $10^{p-1-m}r - 10^{-m}r$ is an integer. That is,

$$10^{-m} \frac{10^{p-1} - 1}{p}$$

is an integer. It is easy to verify that p is neither 2 nor 5 in this assumption. Therefore p cannot divide 10^{-m}. Hence we can conclude that $10^{p-1} \equiv 1 \pmod{p}$. For any other k ($1 < k < p-1$), If $10^k \equiv 1 \pmod{p}, 10^{-m} \frac{10^k - 1}{p}$ becomes an integer, so by the above claim, the decimal expansion of $\frac{1}{p}$ is periodic with period k, which is absurd. Therefore, $10^k \equiv 1 \pmod{p}$ for each $(1 < k < p-1)$, and we can conclude that 10 is a primitive root of p.

Conversely, If 10 is the primitive root of p, it is clear that $10^{p-1-m}r - 10^{-m}r$ is an integer because $10^{p-1} \equiv 1 \pmod{p}$ and m is negative. For any k ($1 \leq k < p-1$), $10^{k-m}r - 10^{-m}r$ is not an integer because

1) $10^k \not\equiv 1 \pmod{p}$ implies that $10^k - 1$ is not a multiple of p.

2) The fact 10 is the primitive root of p implies that p is neither 2 nor 5, hence 10^{-m} is not a multiple of p.

Thus the decimal expansion of $\frac{1}{p}$ is periodic with least period $p-1$, as desired. \square

We need to solve more exercises to prove the statement of Exercise 2.8.35.

Problem 2.8.33 It is clear that $a^k \equiv 1 \pmod{(a^k - 1)}$. For any $0 < i < k$, $0 < a^i - 1 < a^k - 1$, so $a^i \not\equiv 1 \pmod{(a^k - 1)}$. This means that k is the order of a modulo $(a^k - 1)$. Since $(a, a^k - 1) = 1$, it is also clear that $a^{\phi(a^k - 1)} \equiv 1 \pmod{(a^k - 1)}$ by Euler’s theorem. Therefore, $k | \phi(a^k - 1)$, as desired. \square
Problem 2.8.34 Express \(m \) as \(m = \prod_{q|m} q^\alpha \). Then \(\phi(m) = \prod_{q|m} q^{\alpha-1}(q-1) \). Since \(p \mid \phi(m) \), \(p = q \) or \(p \mid (q-1) \) for some \(q \) such that \(q \mid m \). But the previous case never happen because \(p \nmid m \). Therefore there is a prime factor \(q \) of \(m \) such that \(p \mid (q-1) \), that is, \(q \equiv 1 \pmod{p} \).

\[\square \]

Problem 2.8.35 Suppose that there are only finitely many prime numbers \(q \equiv 1 \pmod{p} \). Let \(q_1, \ldots, q_r \) are all the such primes. Let \(a = pq_1q_2 \cdots q_r \) and \(k = p \). By applying Exercise 33, we have

\[p \mid \phi((pq_1q_2 \cdots q_r)^p - 1). \]

If we let \(m = (pq_1q_2 \cdots q_r)^p - 1 \), then \(p \mid \phi(m) \) and \(p \nmid m \). Thus by Exercise 34, there is a prime factor \(q \) of \(m \) such that \(q \equiv 1 \pmod{p} \). By our assumption, \(q \) should be one of \(q_1, \ldots, q_r \). But it is clear that \((m, q_i) = 1 \) for each \(i = 1, \ldots, r \), hence \(q \nmid m \), this is a contradiction. Therefore there exist infinitely many prime numbers \(q \equiv 1 \pmod{p} \). \(\square \)

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)