We've seen: X proj. surface, $f: X \to \mathbb{CP}^2$ generic projection.

- D branch curve = simple Hurwitz curve w/ any nodes

 $\theta: \tau_1(\mathbb{CP}^2 - D) \to \mathbb{C}^n$ satisfying some conditions

- the data $(f^*\nu, \theta)$ is a purely algebraic description of the top of the covering...

Q: what if we start with any $(f^*\nu, \theta)$ satisfying the algebraic conditions

- i.e. D simple Hurwitz, $\theta: \tau_1(\mathbb{CP}^2 - D) \to \mathbb{C}^n$. What do we get?

A: a symplectic branched covering.

Symplectic geom: recall (X^{2n}, ω) is symplectic if $\omega \in \Omega^2(X)$

\[d\omega = 0, \quad \omega^n > 0 \]

- Darboux's Thm: near any point, I local chart, in each

\[\omega = dx_1 \wedge dy_1 + \ldots + dx_n \wedge dy_n. \]

- New's stability Thm: $(\omega_t)_{t \in \mathbb{R}}$ sympl. forms on X compact nbd,

\[(\omega_t) \in H^2(X, \mathbb{R}) \text{ compact} \]

\[= \exists (\phi_t)_{t \in \mathbb{R}}: X \to \mathbb{R}^5. \quad \phi^* \omega_t = \omega_0. \]

Ex.: a Kahler form on a C nbd is symplectic

So, e.g., $\omega_{FS} = i \partial \bar{\partial} \log |z|^2$ on \mathbb{CP}^n which $0 \leq \omega_{FS}$ alg.

gives a sympl. stc.

- The symplectic category is much richer. (Hat example: Tian-Yau 70's)

 E.g.: Hodge theory of a Kahler nbd has b, even

 But Gompf 1994: any finitely produced G is $\pi_1(X^4, \omega)$.

So: not every symplectic nbd has a C stc; but is any stable

almost-C stc, i.e. $J \in \text{End}(TX), J^2 = -\text{Id}$,

\[\omega(J, J) \] is a Kähler metric.

(In fact, any of any stable acs's is contractible).

The diffeo: no constraint on DJ ("integrability")

\[[T^{1,0}, T^{1,0}] \neq T^{1,0}; \quad \exists \beta \neq 0; \quad DJ \neq 0 \]

(Obstruction: Nijenhuis tensor)
Def: A 4-fold (X^4, ω_4) is symplectic. We say $\Phi: X \to Y$ is a symplectic branched covering if $\forall p \in X$, 3 local coordinates near p are adapted (see below) in which Φ is one of the 3 models:

- $\mathbb{C}^3 \to \mathbb{C}^2$: $(x, y) \mapsto (x^3 - xy, y)$
- $\mathbb{C}^2 \to \mathbb{C}^2$: $(x, y) \mapsto (x^3, y)$
- $\mathbb{C}^2 \to \mathbb{C}^2$: $(x, y) \mapsto (x^3, y)$

Adapted coordinates:

- $\Phi: U \to \mathbb{C}^2$ local diffeo such that (ϕ_1, ϕ_2) (the symplectic viewed in the coordinate) is positive on complex lines, i.e., $\phi_1 \phi_2(v, iv) > 0 \forall v \neq 0$.

Equivalently, any complex 2-form $\omega \in \Omega^2$ is a symplectic form if and only if it is an area form.

Rmk: So the branch cut $D \subseteq Y$ is a symplectic submanifold of Y.

Prop: If $\Phi: X \to Y$ symplectic branched covering then there exists a symplectic form ω on X, with $[\omega] = \Phi^*[\omega_Y]$; in fact, there is a canonical ω up to symplectic isometry.

Pf: $\Phi^*[\omega]$ is closed, nondegenerate outside of R, but degenerate (in direction of $\ker \Phi$) along R.

Claim: There exists a 2-form α such that $\alpha|_R > 0$ at every point of R.

Then, take $\omega = \Phi^*[\omega_Y] + \epsilon \alpha$ for $\epsilon > 0$ small enough.

ω is closed, and $\iota_X \omega = \Phi^* (\omega_Y + \epsilon \alpha) + 2 \epsilon \iota_X \alpha = 0$ everywhere.

0: Using ϵ small enough.

Properly $\epsilon \iota_X \alpha > 0$ on R.

Claim: $[\omega]$ is contact; note this is symplectically convex.

Thus, we can interpolate ω and any two ω's regardless of $[\omega]$ is compact.
Claim: calc. in local model. In both models, ker df = \langle x - axi \rangle.

Take \(\alpha = d(\chi_1(x) \chi_2(y)) u dv \)
\[
\int \int \ u = k_1 \times, \ v = k_2 \times \\
\text{cut-off functions for a "box"}
\]
so \(x_1 \equiv 1 \) along \(R \nabla \phi \chi_1(x) \chi_2(y) \)

& sum these over open cover of \(R \).

Next, definition. Any single Hurwitz curve \(D \subset \mathbb{P}^2 \) can be isotoped among simple Hurwitz curves to a symplectic subbundle.

NB. Complex curve an symplectic \((TD = \langle v, iv \rangle) \omega | TD > 0 \omega | (v, iv) \rangle = \langle v, iv \rangle \)

but being sympl. is much easier at each pt, just want TD close to

\(\text{complex} \) than to anti-complex. Can denote by "up to go." at each pt...

Proof. recall \(\mathbb{P}^2 - pt = \text{holb. span of } \mathcal{O}(1) \)

Rescale fiber directions:

\(\begin{pmatrix} x : y : z \end{pmatrix} \rightarrow \begin{pmatrix} x : y : \lambda z \end{pmatrix} \) give \(D_2 \) for \(\lambda \rightarrow 0 \), \(D_2 \) shrinks to a nbhd of the zero section and \(CV \) is \(C^1 \) outside of a nbhd of vertical tangents, i.e. \(TD_2 \) converges to 0-section as well.

Now: away from tangents, \(\omega | TD_2 > 0 \) because the zero section is a symplectic subbundle.

near tangents, ok by local model.

In fact, this contr. is continued up to isotopy among sympl. subbundles:

if \(D, D' \) sympl. & Hurwitz iso to Hurwitz curves

\(\delta \) scale down the family to get an isotopy among sympl. H. curves.

Never, our branched covers w/ sympl. H. branch curves satisfy assumption of the prop.

Going:

To every \((\mathbb{F}^k, \theta)\) (satisfying the def. cond.) can assign a sympl. land \((X, \omega) \) and a sympl. group \(f : X \rightarrow \mathbb{P}^2 \), these are canonically determined up to isotopy.
So... our missing branched covers correspond to sympl. 4-folds !!

Q: how many sympl. 4-folds can we get in this way?

Observe: (up to choice of normalization factor), standard \(W_{CP^2} \) has the
property that \([u_{w,CP^2}] = \) generator of lattice \(H^2(CP^2, Z) = H^2(CP^2, R) \)
So for a sympl. covering of \(CP^2 \) we must have:
\[[w] = [f^*u_{w,CP^2}] \] is always an integer Chow/Lefschetz class.

\[\begin{align*}
\text{Thm.} \quad (X^4, w) \quad \text{compact symp. 4-dif, } [w] \text{ integer class} \\
\Rightarrow \exists \text{ all large enough integer } k, 3 \text{ sympl. branched covering } \text{ } f_k : X \rightarrow CP^2, \text{ with the following properties:}
\begin{itemize}
 \item the symp. form on } X \text{ induced by } f_k \& CP^2 \text{ is } \\
 \text{isotropic to } k \omega
 \item the branch curve } D_k \text{ is a simple } 4 \cdot \text{curves w/ cusps, }
 \text{nodes, and negative self } \text{cings}.
 \item for suff. large } k, 3 \text{ canonical ways of contracting } f_k, \text{ up to isom-op \& node cancellation}
\end{itemize}
\end{align*} \]

\[\text{NB: unknown whether statement can be improved so that neg. nodes don't occur at all?} \]

\[\text{w/o renormalization/cancellations must be performed compatibly w/ } \Theta \text{\ i.e. can only create a pair of nodes if } \frac{\Theta}{\Theta'} \text{ \& } \Theta(\partial, \partial') \text{ are disjoint transpositions. (else } X \text{ becomes singular)} \]

\[\text{In fact,} \]
\[\text{Thm (A. Kuklov-Shcherbak):} \]
\[\text{If } D_1, D_2 \text{ single Hurwitz curves w/ } \pm \text{node} \& \text{ cusps, irreducible.} \]
\[\text{If } \deg D_1 = \deg D_2, \text{ same #cusps, same (#+node - #neg nodes)} \]
\[\text{then } D_1, D_2 \text{ are equ. up to } \{ - \text{isom-op of } H. \text{ curves} \}
\text{- creation/cancellation of nodes} \]
Let \(D = \text{set of pairs a family of } \Delta^2 \text{ into } \text{(halfknots)}^{1, \pm 2, 3} \).

\(\text{a compatible } \theta : \pi_1(\mathbb{CP}^2 - D) \to \mathbb{C}^n \)

up to natural equivalence relations

(conjugacy, Hirzebruch equiv, node coincides

\(J = \{ (x, c), \ c \text{ irreducible group} \} / \text{symplectomorphism} \)

Then we have natural maps \(D \to J \)

\(J \to \text{sequence for } k \geq 0 \) of

\(\text{eff of } D \)

2 composition one way \(J \quad (x, c) \to (f \circ \theta, \theta) \to (x, fcw) \)

But the other way be anything a priori? Don't know

If all symplectic \(k \geq 0 \) of \(\mathbb{CP}^2 \) are obtained by the method of \(\Gamma_k \)

- Actually, believe not.

Idea of them: given \((x, c) \), choose \(j \) compatible acs

- \(L \) is line bundle, \(c \subset L \)

- \(\Delta \text{some mon } L \), w/ curvature -2i\pi c

- \(\Delta \text{operators on sections of } L \):

\(\Delta s = \frac{1}{2} (\Delta s + i \Delta s \cdot j) \)

If \((x, c, j) \) kink in then \(L \) is an angle holon line bundle

\(\Rightarrow k \geq 0 \), \(\mathbb{CP}^2 \) has many holon sections (define an embedding \(x \to \mathbb{CP}^2 \))

So choose 3 sections generically give \(f : x \to (s_0(x), s_1(x), s_2(x)) \)

branched going \(\gamma \).

If \(j \) is only on a c.s. then \(\mathbb{CP}^2 \neq 0 \) and in fact \(\mathbb{CP}^2 \) holon sections of \(\mathbb{CP}^2 \)

(Blow holon for general!)

Still, Donald's observation: for \(k \geq 0 \), \(\mathbb{CP}^2 \) has "agree holon" sections, i.e. s.t.

\(\text{sup } |s| < \frac{c}{v_k} \text{ sup } |s| \); find 3 sections with good enough tranversely

propto so that \((s_0, s_1, s_2) \) is a branched going in the desired direction.

In particular, want: \(- (s_0, s_1, s_2) \) dont vanish simultaneously

"agreement:

\(- \Delta s = s_0 \Delta s_1, s_2 + \ldots \) vanish tranversely

\(\text{transversely neat} \)

- \(\Delta f \text{r vanish tranversely } \ldots \) & much more..."