Def: \(C \subset \mathbb{CP}^2 \) closed oriented dim \(n \geq 2 \) sub-manif w/ isolated singularities

is a Hurwitz curve if

* \((0:0:1) \notin C\)
* \(C\) intersects transversely & positively the fibers of \(\pi: (x:y:z) \mapsto (x:y)\)
* except at finitely many pts \(p_1, \ldots, p_r \in C\)

(singularities & vertical tangencies)

Given any Hurwitz curve \(C \subset \mathbb{CP}^2 \), we can still define braid monodromy.

The "degree" of \(C \) is \(d = [C] \cdot [\text{line}] \geq 0 \) (intersection number \(d/\text{num}\) 2 pts \(\text{slice in } H_2(\mathbb{CP}^2, \mathbb{Z}) \approx \mathbb{Z} \)).

~ stabilization in \(\mathbb{B}_d \).

Usually one requires a bit more by prescribing a class of model behavior at \(p_i \).

Near each \(p_i \), find \(U_i \), a model curve \(\tilde{C} \subset \mathbb{C}^2 \) (in allowed class of models) and orientation-preserving local diffeo. s.t.

\[
\begin{align*}
\pi^{-1}(U_i) & \rightarrow \tilde{C}_i \\
\pi^{-1}(U_i) & \rightarrow \mathbb{C}^2
\end{align*}
\]

Important class of Hurwitz curves: Simple Hurwitz curve: such that

\[
\begin{align*}
\{ \text{ the preimages of the special pts are distinct} \\
\text{all vert. tangents are non-degenerate } & \text{; modelled on } y^2 = x^n \\
\text{all singular pts are modelled on } A_n-\text{sings } & \text{; modelled on } y^2 = x^{n+1} \times \prod_{n=1} \text{n-th node} \text{ (n>1)} \\
\} & \text{ n=2 ordinary comp}
\end{align*}
\]

Link: Our notes are algebraic, which is the most common setting.

Later we'll also allow "\(A_n\)-sings" modelled on \(y^2 = x^{n+1} \cdot n>1 \)

(non-algebraic: "micron image")

- a Hurwitz curve can always be perturbed so special pts lie in different fibers of \(\pi \); and an isometry of Hurwitz curve can be perturbed so this holds at all energies in the ideology. (so this extra requirement isn't much of an issue)
Prop (..., Kulikov-Kharlamov 2003):

For simple hyperplane curves, the braid monodromy \(\pi_1, (\mathbb{C}^2, x) \to \mathbb{B}_d \) determines the curve \(C \) uniquely up to isotopy of \(\mathbb{CP}^2 \) preserving the projection \(\pi \).

Expect this to hold in full generality (all \(H \)-curves); e.g. Kulikov-Kharlamov show this remains true if we allow \(A_n \) sing. modulo, or \(y^k = x^l : \forall k, l \geq 1 \).

Idea: The braid monodromy describes \(C \) above \(\mathbb{D}^2 \times (\mathbb{S}^1)^2 \) \(\sim \mathbb{S}^1 \times \mathbb{S}^1 \) up to fiber-preserving isotopy (faithfully).

Using constraints about what can happen near \(q_i \) to glue in some kind local model for rest of each special pt, to recover all of \(C \).

Graphy:

\[\begin{array}{c}
\{ \text{simple Hurwitz curve in } \mathbb{CP}^2 \} \\
\downarrow 1-1 \\
\{ (b_1, \ldots, b_r) \in \mathbb{B}_d / \prod b_i = \Delta^2 \} \\
\downarrow \text{simult. conj.}
\end{array} \]

(\(\downarrow \) similarly if allow \(y^k = x^l \) or \(y^2 = x^n \) models).

Rank: Can extend this discussion to curves in \(\mathbb{C}^2, \mathbb{CP}^1 \times \mathbb{CP}^1 \), ... (with suitable modifications so braid monodromy makes sense).

Isotopy problem for Hurwitz curves:

- Every alg. curve is Hurwitz (positivity of intersection)
- Unless it's reduced or passes through pole of projection ...
- But simple Hurwitz curves which are not homotopic to any alg. curve.

\(x \) in \(\mathbb{CP}^2 \): various families of examples w/ noda & cusps \((A_1, A_2) \)

Eg: curve of degree 18 w/ 31 cusps \((A_2 \text{ singularities only}) \)

(Notthoon early 90s. Idea: branching along an annulus → get curve w/ only many different \(\pi_1(\mathbb{CP}^2, C) \); only finitely many alg.

Conj: A single Hurwitz curve in \(\mathbb{CP}^2 \) which is smooth or nodal \((A_1 \text{ only}) \)

is isotopic through Hurwitz curves to an algebraic curve.

\(\leftrightarrow \) "symplectic isotopy problem"; proved by Siebel-7/2003 using Hol-curve methods, for smooth curve of deg ≤ 17)
Geom. approach uses J-hol. curve theory, but one could try by Gr theory: Conj: every point of Δ^2 into halfblows or square of halfblows is Harnack conj. equivalent to unit of an alg. curve. (explicit list of model b.m.f.'s).

E.g., for smooth curve: \{smooth alg. curve\} $\subseteq \mathbb{P}(\text{homogeneous alg. polynomial})$ divisor (and same for those which are nondegenerate base of fibers of π), connected set so they all have the same b.m.f. up to Harnack & conj. Poonhavan has shown it is $\Delta^2 = (\sigma_1 \cdots \sigma_{d-1})^d$.

Isotopy conjecture says factor into halfblows.

(No, can't prove conj. by this method except $d = 2$, maybe $d = 3$).

- This phenomenon is specific to projective curves.

Thm (Kulikov-Khovanskii 2003):

- Given any (b_1, \ldots, b_r) algebraic brds (i.e. monodromy of isolated speed points of alg. curve — e.g. positive powers of halfblows),

- Is an algebraic curve $C \subseteq \mathbb{P}^2$ s.t. the basic monodromy of $C \cap (\mathbb{P}^2 \times 0)$ can be realized by the factorization $b_1 \cdots b_r$.

Complex projective surfaces:

$X \subseteq \mathbb{P}^N$ a alg. projective surface, smooth

- X defined by alg. equation (e.g. cayley interesection)

- X compact complex manifold, L ample line bundle

- (i.e. $\sigma_L = [01]$) is Kahler form: $\omega = 2\pi \text{Im}(\omega)$ (\text{Riemannic})

- for $k \gg 0$, L^k has sufficiently many holomorphic sections

- so that choosing a basis $s_0, \ldots, s_N \in H^0(L^k)$,

 $$X \rightarrow \mathbb{P}^N$$

 $$x \mapsto (s_0(x); \ldots; s_N(x))$$

 is an embedding & make $X \times \mathbb{P}^N$ proj.

 (kodaira embedding \Im_K)

- Now, consider a linear projection

 $$p: \mathbb{P}^N \times \mathbb{P}^{N-3} \rightarrow \mathbb{P}^2$$

 (in fact can choose any such

 $$[x_0; \ldots; x_N] \mapsto (x_0:x_1:x_2)$$

 proj. up to proj. linear transformations)

- Can assume $\mathbb{C}^{N-3} \times X = \emptyset$ (for dimensional reasons: $\dim X = 2 < \text{codim } \mathbb{C}^{N-3}$)

 (in fact: given $x \in X$, space of \mathbb{C}^{N-3}'s passing through x has codim 3 in \mathbb{C}^{N-3} in \mathbb{C}^{N-3})

 so all \mathbb{C}^{N-3}'s intersecting X form a nice codim 1 family, generic \mathbb{C}^{N-3} meets X.
Then by induction, get a well-defined map $f: \mathbb{P}^2 \times X \to \mathbb{C}P^2$.

NB: Fibres of $p = \text{linear map } \mathbb{C}P^{n-2} \to \mathbb{C}P^n$ (passing through the given $\mathbb{C}P^{n-2}$) they intersect X in $\{X\}. [\mathbb{C}P^{n-2}] = \text{deg}(X) \beta \ (\alpha \text{ class in } H_2(\mathbb{C}P^n, \mathbb{Z})) \ i.e. \ \text{deg}(f) = \text{deg}(X)$

- We'll assume X is in generic position with p. In fact, this can be ensured by choosing p well.

Prop: For a generic choice of the linear proj p, $f: X \to \mathbb{C}P^2$ is a branched covering whose branch curve has only node & cusp singularities.

In fact:

1. $R \subset X$ ramification curve is a smooth alg. curve $\subset X$ isomorphic to $\mathbb{C}P^1$.

 \[D = f(R) \subset \mathbb{C}P^2 \] is the discriminant curve plane alg. curve \cup cusp node.

2. Local model: $V(p \in X, E)$ local hom. onto $U(p) \subset X$ $U(p) = \mathbb{C}P^2$

 in which f is $\begin{cases} (x, y) \leftrightarrow (x, y) & \text{if } p \not\in R \\ \text{locally diffeo.} \end{cases}$

 - $(x, y) \leftrightarrow (x^2, y)\quad$ as generic pts of R
 - "single branching"

 \[(x, y) \mapsto (x^3 - xy, y) \]

 "cusp".

 \[\text{here } R: \text{det } H_f = 3x^2 - y = 0 \text{ smooth } D = f(R) = \{(x^3, 3x^2) \} \{27z_0^2 - 4z_2^3\} \text{ cusp sing.} \]

 - Where do node come from?

 They correspond to 2 distinct pts of R where single branching occurs and which happen to map to the same point in $\mathbb{C}P^2$.

Status of the result is dubious. See Kulkur & Kulkur 2000 for an attempt.