Lectr 17 - Wed April 19

→ Leftovers from lec. 16: Giroux's construction of open books

Braid monodromy of complex plane curves (Zariski, Moutheau, ...)

Setup:

\[C \subset \mathbb{C}^2 \text{ complex algebraic plane curve (possibly singular!)} \]

\[P(x, y) = 0. \]

Assume: \(\forall x \in C, P(x, \cdot) : P_x \in \mathbb{C}[y] \) is a nonzero polynomial of degree \(d \) (incl. \(x \)).

This means \(P(x, y) = y^d + Q_{d-1}(x) y^{d-1} + \ldots + Q_0(x) \)

for some \(Q_0, \ldots, Q_{d-1} \in \mathbb{C}[x] \).

Geometrically: \(C \) doesn't have any vertical asymptotic branches, i.e. the projective completion \(\overline{C} \subset \mathbb{P}^2 = \mathbb{P}^1 \times \mathbb{P}^1 \) does not pass through \((x, 0) \forall x \in C\).

Discriminant: \(\Delta(x) = \text{discr} \text{im} \text{it} \text{ of the degree } d \text{ polynomial } P_x \in \mathbb{C}[y] \)

(when coefficients depend polynomially on \(x \)!

\[\Delta \in \mathbb{C}[x], \text{ its roots } \equiv \text{max} x \text{ s.t. } P_x \text{ has multiple roots in } y \]

\[\equiv \text{value of } x \text{ s.t. } C \cap \{ y = 0 \} \text{ consists of fewer than } d \text{ distinct points} \]

Assume: \(C \) does not contain any multiple components, i.e. \(\Delta \not= 0 \).

(avoid: \(y^2 = 0 \) hodge line)

Let \(\{ q_1, \ldots, q_r \} \subset C \) := the distinct roots of \(\Delta \)

(\(r \) is often \(r < \text{deg } \Delta \)).

\[\begin{array}{c}
\mathbb{C}^2 \\
\downarrow \pi \\
\mathbb{C} \\
\end{array} \]

The projection \(\pi : \mathbb{C}^2 \rightarrow \mathbb{C} \)

\((x, y) \mapsto x \)

restricts to \(C \) as a (singular, ramified) \(d \)-fold covering, unramified over \(C \setminus \{q_1, \ldots, q_r\} \)

\(\{q_1, \ldots, q_r\} \) is \(r \) distinct points of \(C \) of degree \(d \), and by def\(^* \), \(\{q_1, \ldots, q_r\} \) = \(\mathbb{P}^1 \) with fewer than \(d \) primes.
The only way \(C \cap \{ x < C \} \) can have fewer than \(d \) points is if

the adj. intersection multiplicity at one of these \(p_i \) (resp. intersection number) is \(> 1 \), which occurs iff \(C \) is either singular, or tangent to \(\nu \).

(mult. root of \(P \) \(\iff \) \(P = 0, \frac{\partial P}{\partial y} = 0 \); if \(\frac{\partial P}{\partial x} = 0 \), sing. pt, else tangency)

So, \(\{ q_i \} \) is projection of \(\{ \text{pts where } C \text{ is not smooth} \} \)

"special pts" of \(C = \{ \text{pts where } C \text{ is tangent to the fiber of } \nu \} \)." We have a natural map \(\sigma : C \setminus \{ q_1, \ldots, q_r \} \rightarrow \mathbb{C}d \) induced only for \(\nu \).

For \(x \in C \setminus \{ q_1, \ldots, q_r \}, \sigma(x) = \pi_{C}^{-1}(x) \in \mathbb{C}(\mathbb{R}) \) is an induced copy of \(d \) pts in the plane.

Fix a base point \(x_{a} \in C \setminus \{ q_1, \ldots, q_r \} \), and consider a loop \(\gamma \in \pi_{1}(C \setminus \{ q_1, \ldots, q_r \}, x_{a}) \rightarrow \rho(\gamma) = [\sigma_{\gamma}(\gamma)] \in \pi_{1}(\mathbb{C}d, \sigma(x_{a})) \)

\[\mathbb{C}d \]

Defn: \(\rho : \pi_{1}(C \setminus \{ q_1, \ldots, q_r \}) \rightarrow \mathbb{C}d \) is the braid monodromy of \(C \)

(map on fundamental groups induced by \(\sigma \))

This depends on choice of an isom. \(\pi_{1}(\mathbb{C}d, \sigma(x_{a})) \rightarrow \mathbb{C}d \), induced by choice of homeo \((\mathbb{C}, \pi_{1}^{-1}(x_{a})) \sim (\mathbb{R}^2, \{ 0 \}) \).

Diffeomorphism \(\sim \) relase \(P \) by its conjugation \(\text{by an inv. out. of } \mathbb{C}d \) (conjugation by some braid = "change of hand" of the fiber).

Exist: conic \(x^{2} + y^{2} = 1 \)

red path \(\frac{\sqrt{2}}{2} \)

y = 1 - x^{2} has a double root

\[\text{iff } 1 - x^{2} = 0 \iff x = \pm 1 \]

- at \(x_{a} = 0 \), \(\sigma(0) = \{ \pm 1 \} \)

- consider the loop \(x(\theta) = (1 - e^{i\theta})^{1/2} \) (the square root will \(\Re x > 0 \)),

\[0 \leq \theta \leq 2\pi \]

\(\rightarrow \) above \(x(\theta) \) we have \(y^{2} = 1 - x(\theta)^{2} = e^{i\theta} \)

i.e. \(\sigma(x(\theta)) = \{ \pm e^{i\theta/2} \} \)

\(\Rightarrow \) The braid monodromy along this loop is \(\sigma_{1} \)

- similarly (b) symmetric around \(-1 \).

\[\begin{array}{c}
\text{get:} \quad \sigma_{1} \end{array} \]
Non generally: if at some point the curve \(C \) is smoothly tangent to the fibre of \(\pi \) in a nondegenerate manner

\(\sigma \) monodromy around this \(q \) is a **half-twist** \(\in \text{BD} \)

Indeed, in nearby fibres of \(\pi \):

\[y^2 = x, \text{ i.e. } y = \pm e^{i\theta / 2} \]

"local monodomy" is a half-twist.

= nothing happens

Monodomy along is the same braid up to

isomorphism \(\pi_1(C_0, \sigma(x)) \cong \pi_1(C_0, \sigma(x')) \).

induced by moving base pt along arc \(\sigma(x) \sim \sigma(x') \).

(so it's still a half-twist - it still exchanges strands CCW - but it may look more complicated than in the local picture because

\[\sigma(x) \sim \text{trans} \sigma(x') \]

\[\sigma(x) \sim \sigma(x') \]

Ex. 2: two lines \(y^2 = x^2 \)

monodromy around 0:

\(\sigma(x) = \{ \pm x \} \)

\(x = e^{i\theta} \leadsto \sigma(x) = \{ \pm e^{i\theta / 2} \} \) monodromy is \(\sigma^2 \)

Non generally, if at some point \(C \) has a node (transverse double pt)

both branches are transverse to the \(\text{proj} \pi \),

local monodromy = square of a half-twist

(\(\text{loc.} \))

Similarly, general types of singularities are recognizable from their braid monodromies! - braid monodromy is the natural way of describing the sing. of a plane curve & how they fit together.

Next: - setup for projective curves
- Zariski-Van Kampen