Problem 8. Let \((A_i : i \geq 1)\) be a sequence of countable sets. Show that
\[
\bigcup_{i \in \mathbb{N}\setminus\{0\}} A_i
\]
is also countable.

Proof.
Problem 9. Let \(f : (0, 1) \to \mathbb{R} \) be given and suppose that \(x \mapsto f(x) \) has a limit as \(x \to c \) for some \(c \in (0, 1) \). Show that the limit is unique – that is, suppose that \(a, b \) are limits of \(f \) as \(x \to c \) and show that \(a = b \).

Proof.

Problem 10. Define \(f : \mathbb{R} \to \mathbb{R} \) by the conditions

\[
 f(x) = 1 \text{ for } x \in \mathbb{Q}
\]

and

\[
 f(x) = -1 \text{ for } x \in \mathbb{R} \setminus \mathbb{Q}.
\]

Show that, for every \(x_0 \in \mathbb{R} \), \(f(x) \) does not have a limit as \(x \to x_0 \). (In other words, given \(x_0 \in \mathbb{R} \) and \(\lambda \in \mathbb{R} \), show that the condition

\[
 \lim_{x \to x_0} f(x) = \lambda
\]

is not valid. You may use the fact that for any \(z \in \mathbb{R} \) and \(\epsilon > 0 \) there exists \(q \in \mathbb{Q} \) with \(|z - q| < \epsilon \).

Proof.
Problem 11. Let \(f : (0,1) \rightarrow (0,1) \) be a surjective function which is strictly increasing in the sense that for every \(x, y \in (0,1) \) with \(x < y \) we have \(f(x) < f(y) \). Show that \(f \) is continuous.

(Recall that \(f \) surjective (alternatively, onto) means that for every \(y \in (0,1) \) there exists \(x \in (0,1) \) with \(f(x) = y \)).

Proof.