2. Let \(f \) and \(g \) be irreducible homogeneous polynomials in \(x, y, z \). Prove that if the loci \(\{ f = 0 \} \) and \(\{ g = 0 \} \) are equal, then \(g = cf \).

We write \(f \) and \(g \) as polynomials in \(z \) whose coefficients are polynomials in \(x, y \), and we embed \(R = \mathbb{C}[x, y, z] \) into the ring \(F[z] \), where \(F = \mathbb{C}(x, y) \).

Suppose that \(g \) isn’t a constant multiple of \(f \). Then because these polynomials are irreducible, they have no common factor in \(R \). They can’t have a common factor in \(F[z] \) either. If \(h \) was a common factor in \(F[z] \), one could clear denominators to make \(h \) an element of \(R \), and replace \(h \) by an irreducible factor in \(R \) that involves \(z \). Then since \(h \) divides \(f \) in \(F[z] \), it divides in \(R \) too.

This being so, one can write \(pf + qg = 1 \), with \(p, q \) in \(F[z] \). Clearing denominators gives an equation in \(R \) of the form \(\hat{p}f + \hat{q}g = d(x, y) \). Then for any point \((x_0, y_0)\) such that \(d(x_0, y_0) \neq 0 \), \(f(x_0, y_0, z) \) and \(g(x_0, y_0, z) \) have no common zeros.

4. Prove that a plane cubic curve can have at most one singular point.

Suppose that the cubic curve \(C \) is singular. We choose coordinates so that the singular point is \(p = (0, 0, 1) \). Let the equation for \(C \) be \(f(x, y, z) = 0 \). Then \(f(p) = 0 \) because \(p \in C \), and \(f_x(p) = f_y(p) = 0 \) because \(p \) is a singular point. This implies that the coefficients of the monomials \(z^3, xz^2, yz^2 \) in \(f \) are zero. If there were another singular point, we could put it at \(q = (1, 0, 0) \), and the same reasoning would show that the coefficients of \(x^3, x^2y, x^2z \) in \(f \) are zero. Then \(f \) would be a combination of \(y^3, xy^2, y^2z, xyz \), and would be divisible by \(y \), contradicting irreducibility.

6. Let \(C \) be a smooth cubic curve in \(\mathbb{P}^2 \), and let \(p \) be a flex point of \(C \). Choose coordinates so that \(p \) is the point \((0, 1, 0)\) and the tangent line to \(C \) at \(p \) is the line \(\{ z = 0 \} \).

(a) Show that the coefficients of \(x^2y, xy^2, \) and \(y^3 \) in the defining polynomial \(f \) of \(C \) are zero.

(b) Show that with a suitable choice of coordinates, one can reduce the defining polynomial to the form \(f = y^2z + x^3 + axz^2 + bz^3 \), where \(x^3 + ax + b \) is a polynomial with distinct roots.

(c) Show that one of the coefficients \(a \) or \(b \) can be eliminated.

(b) With coordinates as indicated, the cubic polynomial has the form \(f(x, y, z) = y^2z + \ell(x, z)yz + c(x, z) \), where \(\ell \) and \(c \) are homogeneous linear and cubic, respectively. The coefficient of \(y^2z \) will be nonzero, and can be normalized to 1. Then \(f = 0 \) is a quadratic equation in \(y \). Completing the square by the substitution \(y \rightarrow y - \frac{1}{2} \ell \) eliminates the linear term, leaving us with \(y^2z + c'(x, z) \). The quadratic term in \(z \) can be eliminated by a substitution \(x \rightarrow x + *z \).

(c) Since \(C \) is smooth, \(a \) and \(b \) aren’t both zero. Unless \(b = 0 \), scaling can be used to replace \(b \) by 1. If \(b = 0 \), one can make \(a = 1 \) instead.