Problem 1:

For $d \equiv 1$ modulo 8, 2 is not prime. Indeed:

$$2 \mid \left(\frac{1 + \sqrt{d}}{2} \right) \left(\frac{1 - \sqrt{d}}{2} \right)$$

but 2 does not divide either of the two factors. Meanwhile, for $d \equiv 5$ modulo 8, we will show that 2 is indeed prime. Assume that:

$$2 \mid \left(\frac{x + y\sqrt{d}}{2} \right) \left(\frac{x' + y'\sqrt{d}}{2} \right) \quad (1)$$

where x, y (respectively x', y') are both even or both odd, and assume that neither of the two factors is divisible by 2. This implies that either x, y (respectively x', y') are both odd, or one is congruent to 0 mod 4, while the other one is congruent to 2 mod 4. In either of these cases, we have:

$$(x^2, y^2) \equiv (1, 1) \text{ or } (0, 4) \text{ or } (4, 0) \mod 8$$

and therefore:

$$x^2 - y^2d \equiv 4 \mod 8 \implies N\left(\frac{x + y\sqrt{d}}{2} \right) \equiv 1 \mod 2$$

Together with the analogous result for x', y', this implies that the factors in the right hand side of (1) both have odd norm. Since 2 has even norm, this contradicts (1).

Problem 2:

a) The lattices in question are actually maximal ideals, because the quotients R/P and R/Q are fields. To see this, note that as a set, $|R/P| = 2$ while $|R/Q| = 3$. It is easy to see that all rings of cardinality 2 are isomorphic to \mathbb{F}_2 (since their only elements are 0 and 1) and all rings of cardinality
3 are isomorphic to \(\mathbb{F}_3 \) (since their only elements are 0, 1 and \(-1\)).

b) We claim that (6) = \(P\bar{P}Q\bar{Q} \). To see this, note that:

\[P\bar{P} = (2, \delta)(2, -\delta) = (4, 2\delta, -\delta^2) = (4, 2\delta, 6) = (2) \]
\[Q\bar{Q} = (3, \delta)(3, -\delta) = (9, 3\delta, -\delta^2) = (9, 3\delta, 6) = (3) \]

c) In the case at hand, we have \(\mu = \sqrt{8} \). Theorem 13.7.10 (b) says that the class group is generated by prime ideals of norm 2. The only such ideals are \(P \) and \(\bar{P} \), because the existence of any other prime ideal of norm 2 would contradict the unique factorization (2) = \(P\bar{P} \). Since:

\[\langle P \rangle + \langle P \rangle = \langle (2) \rangle = 0 \]

in the class group, we conclude that the class group is \(\mathbb{Z}_2 \).

Problem 3:

We will refine the standard argument. Consider the operator of multiplication by a non-zero element \(r \in R \):

\[R \xrightarrow{f} R, \quad f(\alpha) = r \cdot \alpha \]

This is a linear transformation of \(F \)-vector spaces, since \(f(\alpha + \beta) = f(\alpha) + f(\beta) \) and \(f(\alpha \lambda) = \lambda f(\alpha) \) for all \(\lambda \in F \). But \(f \) is injective because \(R \) is an integral domain. Since \(R \) is finite dimensional over \(F \), this implies that \(f \) is surjective, hence:

\[\exists \alpha \in R \text{ such that } 1 = f(\alpha) = r \cdot \alpha \]

This shows that every element of \(R \) has a multiplicative inverse, hence \(R \) is a field.

Problem 4:

Since \(\beta \) satisfies the equation \(\beta^3 = 2 \), we have:

\[K = \mathbb{Q}(\beta) = \left\{ s + \beta t + \beta^2 u, \ s, t, u \in \mathbb{Q} \right\} \]
In other words, we claim that the inverse of any element of the form (2) is still of that form. The reason is that:

$$\frac{1}{s + \beta t + \beta^2 u} = s' + \beta t' + \beta^2 u'$$

for some rational numbers s', t', u'. Therefore, let us write:

$$x_i = s_i + \beta t_i + \beta^2 u_i$$

for rational numbers s_i, t_i, u_i. Squaring the above formula gives us:

$$x_i^2 = (s_i^2 + 2t_iu_i + \beta(2u_i^2 + 2s_it_i) + \beta^2(t_i^2 + 2u_is_i))$$

The equation $x_1^2 + \ldots + x_k^2 = -1$ would imply:

$$\sum_{i=1}^{k}(s_i^2 + 2t_iu_i) = -1, \quad \sum_{i=1}^{k}(u_i^2 + s_it_i) = 0, \quad \sum_{i=1}^{k}(t_i^2 + 2u_is_i) = 0$$

Multiply the middle equation by 2 and add all of them together:

$$\sum_{i=1}^{k}(s_i^2 + 2u_i^2 + t_i^2 + 2t_iu_i + 2s_it_i + 2u_is_i) = -1$$

We obtain a contradiction, since the left hand side is $\sum_{i=1}^{k}[(s_i + t_i + u_i)^2 + u_i^2]$

1 To see this, multiply the two sides, replace all β^3 by 2, set the coefficients of $1, \beta, \beta^2$ equal to 1, 0, 0, and use the resulting equations to solve for s', t', u' in terms of s, t, u