1

(a) We have \((D^2 - x^2)y = 0\). The dimension of \(D^2\) is \(-2\), the dimension of \(x^2\) is \(2\). (b) We write \(y(x) = \sum_n a_n x^n\). Hence \(y'' = \sum_n n(n-1) a_n x^{n-2}\), and so the differential equation gives us

\[
\sum_n n(n-1) a_n x^{n-2} = \sum_n a_n x^{n+2},
\]

or

\[
n(n-1) a_n = a_{n-4}
\]

(1)

Since there are no singular points, \(a_n = 0\) for \(n < 0\). Using \(n = 2\) in (1) we see that \(2a_2 = a_{-2} = 0\), and in fact \(a_{4k+2} = 0\) for any integer \(k\). In the same way, using \(n = 3\) in (1) we see that \(a_{4k+3} = 0\) for any integer \(k\). And using \(n = 0, 1\) in (1) indicates that \(a_0, a_1\) are undetermined. We shall write the solution in terms of these two constants. Consider \(a_{4k}\) for any integer \(k > 0\):

\[
a_{4k} = \frac{a_{4(k-1)}}{4^2 k(k-1/4)} = \ldots = \frac{a_0}{4^2 k!(k-1/4)\ldots(3/4)} = \frac{a_0 \Gamma(3/4)}{4^2 k! \Gamma(k+3/4)}.
\]

Now consider \(a_{4k+1}\) for any integer \(k > 0\):

\[
a_{4k+1} = \frac{a_1}{4^2 k!(k+1/4)\ldots(5/4)} = \frac{a_1 \Gamma(5/4)}{4^2 k! \Gamma(k+5/4)}.
\]

Note that there are only 2 different dimensions in the equation, so that we obtain a recursion formula involving 2 terms \((a_n\) and \(a_{n-4}\)), which can be written down explicitly. And the solution is

\[
y = \sum_{k=0}^{\infty} \frac{a_0 \Gamma(3/4)x^{4k}}{4^2 k! \Gamma(k+3/4)} + \frac{a_1 \Gamma(5/4)x^{4k+1}}{4^2 k! \Gamma(k+5/4)}.
\]

2

(a) We want to find the WKB approximation of \(y\) for \(x > x_0\), and for which values of \(x\) do we expect it to be a good approximation. First, we have

\[
p = \sqrt{x} \Rightarrow \int p(x')dx' = \int_{x_0}^x x p(x')dx' = \frac{2}{3} \left(x^{3/2} - x_0^{3/2} \right).
\]
Important note: the technique works fine if you used \(\int p(x') \, dx' = \frac{2}{3} x^{3/2} \) instead, but finding the constant is much more messy... We expect this to be valid when
\[
\left| \frac{d}{dx} \right| \ll 1 \Rightarrow \left| -\frac{1}{2x^{3/2}} \right| \ll 1 \Rightarrow x \gg 2^{-2/3} \approx 1.
\]

Hence we write
\[
y_{WKB} = A \cos \left(\int p(x') \, dx' \right) + B \sin \left(\int p(x') \, dx' \right) = \frac{A \cos \left(2x^{3/2}/3 - 2x_0^{3/2}/3 \right) + B \sin \left(2x^{3/2}/3 - 2x_0^{3/2}/3 \right)}{x^{1/4}}.
\]

And we use the initial conditions to solve for \(A \) and \(B \):
\[
y_{WKB}(x_0) = 1 = \frac{A}{x_0^{1/4}} \Rightarrow A = x_0^{1/4}
\]
\[
y_{WKB}'(x_0) = 0 = \frac{B \cos(0)\sqrt{x}x^{1/4} - A \cos(0)x^{-3/4}/4}{x_0^{1/2}} \Rightarrow B = x_0^{-5/4}/4.
\]

So that
\[
y_{WKB} = \left(\frac{x_0}{x} \right)^{1/4} \cos \left(2x^{3/2}/3 - 2x_0^{3/2}/3 \right) + \frac{1}{4x^{1/4}x_0^{5/4}} \sin \left(2x^{3/2}/3 - 2x_0^{3/2}/3 \right).
\]

(b) We now wish to compare the WKB approximation we just computed with the actual solution, which we shall obtain using a numerical solver such as Matlab’s ode45. Careful: we need to be careful for large values of \(x \), because the numerical solution is less and less accurate as \(x \to \infty \). If you would like to see the code I used to plot things, send me an email. See plots below, where we see the error slowly decrease as \(x \) becomes larger.

3 Chapter 7, Problem 4

\[
\frac{d^4 y}{dx^4} + \lambda^4 U(x) y = 0, \quad \lambda \gg 1
\]

First, consider the case \(U(x) > 0 \), let
\[
p(x) = \left[U(x) \right]^{1/4},
\]
and \(P(x) = \int_0^x p(x') \, dx' \) (note that the lower limit does not matter)

The zeroth-order WKB approximation is
\[
y_0(x) = e^{\alpha P(x)}, \quad \text{for some number } \alpha
\]

Then
\[
y_0(x) = \alpha \lambda p(x) e^{\alpha P(x)} = \alpha \lambda p(x) e^{\alpha \int_0^x p(x') \, dx'}
\]
\[
y_0^{(4)}(x) = \alpha^4 \lambda^4 p^4(x) e^{\alpha \int_0^x p(x') \, dx'} + O(\lambda^3)
\]
both solutions, \(x_0 = 10 \)
Putting this into the differential equation, and compare the $O(\lambda^4)$ terms, we require

$$\alpha^4 + 1 = 0$$

or

$$\alpha = e^{i\pi/4}, e^{3i\pi/4}, e^{5i\pi/4}, e^{7i\pi/4}.$$

Thus,

$$y^{WKB}_0(x) = e^{\frac{1+i\sqrt{2}}{2} \lambda P(x)}, e^{-\frac{1+i\sqrt{2}}{2} \lambda P(x)}, e^{\frac{1-i\sqrt{2}}{2} \lambda P(x)}, e^{-\frac{1-i\sqrt{2}}{2} \lambda P(x)}.$$

To find higher-order terms of the solutions, we put

$$y = e^{\alpha \lambda P(x)} v,$$

into the differential equation, where α is one of the four values determined above. Carrying out the calculations, we have

$$d^4 \left[e^{\alpha \lambda P(x)} \right] dx^4 = e^{\alpha \lambda P(x)} (D + \lambda \alpha p)^4 v$$

Substituting the expression above into the differential equation, we find that the $O(\lambda^4)$ terms cancel, giving us

$$[4(\alpha \lambda p)^3 D + 6(\alpha \lambda)^3 p^2 p' + O(\lambda^2)] v = 0$$

Dividing by λ^3 and letting $\epsilon = 1/\lambda$, we get

$$\left[D + \frac{3p'}{2p} + O(\epsilon) \right] v = 0 \quad (2)$$

We solve the equation above by regular perturbation. Let

$$v = v_0 + \epsilon v_1 + \ldots,$$

and requiring the $O(1)$ terms of equation (4) to vanish, we get

$$\left(D + \frac{3p'}{2p} \right) v_0 = 0$$

$$v_0(x) = [p(x)]^{-3/2}$$

Thus, for $U(x) > 0$, we get the zeroth and first order WKB approximations as:

$$y^{WKB}_0(x) = e^{\alpha \lambda \int^x U(x')^{1/4} dx'} \frac{1}{U(x)^{3/8}}, \quad (3)$$

where $\alpha = e^{i\pi/4}, e^{3i\pi/4}, e^{5i\pi/4}, e^{7i\pi/4}$.

We can carry out similar calculations for the case $U(x) < 0$ to obtain

$$y^{WKB}_0(x) = e^{\beta \lambda \int^x |U(x')|^{1/4} dx'} \frac{1}{|U(x)|^{3/8}}, \quad (4)$$

where $\beta = \pm 1, \pm i$.