Problem Set 4

Unless otherwise specified, you may use MATLAB to assist with computations. Please provide a print-out of the code used and its output with your assignment.

1. Projections.
 (a) Find the point on the plane $2x + 2y + z = 0$ nearest to the point $(x = 3, y = 3, z = -2)$.
 (b) Point a has coordinates $(x = 0, y = 1, z = 5)$ and point b has coordinates $(x = 4, y = 4, z = 4)$. Which of these points is closer to the line defined by $\{y = 2x, y = 2z\}$?

2. Least squares. This problem is to be done by hand. Consider the system of equations $Au = b$ where $A = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$.
 (a) Show that there are no exact solutions for u.
 (b) Set up the normal equations for the vector \hat{u} that minimizes the length of $b - A\hat{u}$.
 (c) Find the QR factorization, $A = QR$ using the Gram-Schmidt procedure. Use it to solve for \hat{u}.
 (d) What best-fit problem does this least squares problem correspond to? Sketch the data points and the best-fit curve.

3. Linear Transformations
 (a) Consider a Householder matrix of form $H = I - 2uu^\top$ where u is a $n \times 1$ unit vector.
 i. Show that H is symmetric ($H^\top = H$), orthogonal ($H^\top H = I$), and that it is its own inverse ($H = H^{-1}$). Is H full rank?
 ii. Find all eigenvalues of H.
 (b) Consider the matrix $D = I - uu^\top$ where u is a $n \times 1$ unit vector.
 i. Describe the transformation of a vector v when multiplied on the left by the matrix D. Similarly, describe the transformation $D^{ij}v$.
 ii. Is D full rank? If not, find an orthonormal basis for the null space of D.
 iii. Does D have a zero eigenvalue? If so, how many? Find the associated eigenvector.
4. Consider the following “internet” with five websites, where each arrow indicates a link from its starting page to its destination page.

(a) Write the eigenvalue equation $Ar = \lambda r$ that defines the ranks r_1, \ldots, r_5 of the five websites. What value of λ do we want?

(b) Solve this system to find the page ranks. Which page is trusted most?

5. Population dynamics. **This problem is to be done by hand.** A rabbit population (r) and wolf population (w) satisfy the following pair of coupled differential equations:

$$\frac{dr}{dt} = 10r - 4w, \quad (1)$$

$$\frac{dw}{dt} = 2r + w. \quad (2)$$

If the initial number of rabbits is 25 and the initial number of wolves is 15, what are the populations at time t? After a long time, what is the ratio of rabbits to wolves?